精英家教网 > 高中数学 > 题目详情
3.若三棱锥P-ABC的最长的棱PA=2,且各面均为直角三角形,则此三棱锥的外接球的体积是$\frac{4π}{3}$.

分析 根据已知可得三棱锥的外接球的直径为2,进而求出球半径,代入球的体积公式,可得答案.

解答 解:若三棱锥P-ABC的最长的棱PA=2,且各面均为直角三角形,
将此三棱锥的外接球的直径为2,
故此三棱锥的外接球的半径为1,
故此三棱锥的外接球的体积V=$\frac{4π}{3}$,
故答案为:$\frac{4π}{3}$.

点评 本题考查的知识点是球的体积与表面积,根据已知得到球的半径,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-x2+3x•|x-a|,其中a>0.
(1)当a=2时,求函数在x∈(-1,6)上的值域;
(2)若函数在x∈(-1,6)上既有最大值又有最小值,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,其中,an≠0,a1为常数,且-a1,Sn,an+1成等差数列.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.向量$\overrightarrow{a}$,$\overrightarrow{b}$所在的直线分别是l1,l2
(1)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,试探讨l1与l2的关系;
(2)试探讨(1)的逆命题是否成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=cos(2x-$\frac{π}{3}$)的部分图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合A={x|y=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x+1)}}$},B={x|($\frac{1}{2}$)x≤1},则∁U(A∪B)=(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是R上的奇函数,其图象与x轴有5个交点,则f(x)=0的所有根之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若{an}为等比例函数,a5=8a2,a3=16,则数列{$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{3}{a}_{n+1}}$}的前n项和Sn=$\frac{n}{2n+4}$log32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\sqrt{3}$sin2x+cos2(x+$\frac{π}{4}$)的振幅为$\sqrt{3}$-1.

查看答案和解析>>

同步练习册答案