精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴的极坐标系中,曲线上一点的极坐标为,曲线的极坐标方程为.

1)求曲线的极坐标方程;

2)设点上,点上(异于极点),若四点依次在同一条直线上,且成等比数列,求的极坐标方程.

【答案】1;(2

【解析】

1)先根据平方关系消元得曲线的直角坐标方程,再根据将直角坐标方程化为极坐标方程,最后代入点极坐标,可求出的值,进而得出答案;

2)先设直线的极坐标方程为,代入,根据成等比数列得,代入化简可得,进而可得出答案.

1)曲线的直角坐标方程为,化简得

,所以.

代入点,可得,解得

因为,所以,所以曲线的极坐标方程为.

2)由题意,可设直线的极坐标方程为,设点,则.

联立,得,所以.

联立,得.

因为成等比数列,所以,即.

所以,解得.

所以的极坐标方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代在珠算发明之前多是用算筹为工具来记数、列式和计算的.算筹实际上是一根根相同长度的小木棍,如图,算筹表示数19的方法有“纵式”和“横式”两种,规定个位数用纵式,十位数用横式,百位数用纵式,千位数用横式,万位数用纵式,…,以此类推,交替使用纵横两式.例如:627可以表示为“.如果用算筹表示一个不含“0”且没有重复数字的三位数,这个数至少要用7根小木棍的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过椭圆的左焦点.

1)求椭圆与抛物线的方程;

2)直线经过椭圆的上顶点且与抛物线交于两点,直线与抛物线分别交于点(异于点),(异于点),证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究不同性别在处理多任务时的表现差异,召集了男女志愿者各200名,要求他们同时完成多个任务,包括解题、读地图、接电话.下图表示了志愿者完成任务所需的时间分布.以下结论,对志愿者完成任务所需的时间分布图表理解正确的是(

①总体看女性处理多任务平均用时更短;

②所有女性处理多任务的能力都要优于男性;

③男性的时间分布更接近正态分布;

④女性处理多任务的用时为正数,男性处理多任务的用时为负数.

A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,圆的圆心为,一动圆与圆内切,与圆外切.

(1)求动圆圆心的轨迹方程;

(2)过点的直线与曲线交于两点,点是直线上任意点,直线的斜率分别为,试探求的关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.

拥有驾驶证

没有驾驶证

合计

得分优秀

得分不优秀

25

合计

100

(1)补全上面的列联表,并判断能否有超过的把握认为“安全意识优秀与是否拥有驾驶证”有关?

(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,抛物线的焦点恰好是该椭圆的一个顶点.

1)求椭圆的方程;

2)已知圆的切线(直线的斜率存在且不为零)与椭圆相交于两点,那么以为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P(x0y0)在曲线yx2(x0)上.已知A(0,-1)n∈N*.记直线APn的斜率为kn

1)若k12,求P1的坐标;

2)若k1为偶数,求证:kn为偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求在区间上的最大值和最小值;

2)若对恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案