【题目】在直角坐标系中,曲线的参数方程为(为参数,),以坐标原点为极点,以轴正半轴为极轴的极坐标系中,曲线上一点的极坐标为,曲线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)设点在上,点在上(异于极点),若四点依次在同一条直线上,且成等比数列,求的极坐标方程.
科目:高中数学 来源: 题型:
【题目】我国古代在珠算发明之前多是用算筹为工具来记数、列式和计算的.算筹实际上是一根根相同长度的小木棍,如图,算筹表示数1~9的方法有“纵式”和“横式”两种,规定个位数用纵式,十位数用横式,百位数用纵式,千位数用横式,万位数用纵式,…,以此类推,交替使用纵横两式.例如:627可以表示为“”.如果用算筹表示一个不含“0”且没有重复数字的三位数,这个数至少要用7根小木棍的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过椭圆的左焦点.
(1)求椭圆与抛物线的方程;
(2)直线经过椭圆的上顶点且与抛物线交于,两点,直线,与抛物线分别交于点(异于点),(异于点),证明:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究不同性别在处理多任务时的表现差异,召集了男女志愿者各200名,要求他们同时完成多个任务,包括解题、读地图、接电话.下图表示了志愿者完成任务所需的时间分布.以下结论,对志愿者完成任务所需的时间分布图表理解正确的是( )
①总体看女性处理多任务平均用时更短;
②所有女性处理多任务的能力都要优于男性;
③男性的时间分布更接近正态分布;
④女性处理多任务的用时为正数,男性处理多任务的用时为负数.
A.①④B.②③C.①③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:的圆心为,圆:的圆心为,一动圆与圆内切,与圆外切.
(1)求动圆圆心的轨迹方程;
(2)过点的直线与曲线交于,两点,点是直线上任意点,直线,,的斜率分别为,,,试探求,,的关系,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.
拥有驾驶证 | 没有驾驶证 | 合计 | |
得分优秀 | |||
得分不优秀 | 25 | ||
合计 | 100 |
(1)补全上面的列联表,并判断能否有超过的把握认为“安全意识优秀与是否拥有驾驶证”有关?
(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,左、右焦点分别为、,抛物线的焦点恰好是该椭圆的一个顶点.
(1)求椭圆的方程;
(2)已知圆的切线(直线的斜率存在且不为零)与椭圆相交于、两点,那么以为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P(x0,y0)在曲线y=x2(x>0)上.已知A(0,-1),,n∈N*.记直线APn的斜率为kn.
(1)若k1=2,求P1的坐标;
(2)若k1为偶数,求证:kn为偶数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com