分析 (1)当a=-4时,不等式f(x)<0可化为:-4x2+4x+3<0,解得A;
(2)若不等式$(\frac{1}{2})^{f(x)}$<4=${(\frac{1}{2})}^{-2}$的解集为R,则f(x)>-2恒成立,则a=0,或$\left\{\begin{array}{l}a>0\\ \frac{12a-{a}^{2}}{4a}>-2\end{array}\right.$,解得答案.
解答 解:(1)当a=-4时,解f(x)=-4x2+4x+3<0得:x<$-\frac{1}{2}$,或x>$\frac{3}{2}$,
∴A={x|x<$-\frac{1}{2}$,或x>$\frac{3}{2}$},
(2)若不等式$(\frac{1}{2})^{f(x)}$<4=${(\frac{1}{2})}^{-2}$的解集为R,
则f(x)>-2恒成立,
则a=0,或$\left\{\begin{array}{l}a>0\\ \frac{12a-{a}^{2}}{4a}>-2\end{array}\right.$,
解得:a∈[0,20)
点评 本题考查的知识点是二次函数的性质,指数不等式的解法,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (5-2$\sqrt{6}$,4-$\sqrt{13}$) | B. | (8-2$\sqrt{15}$,4-2$\sqrt{3}$) | C. | (5-2$\sqrt{6}$,4-2$\sqrt{3}$) | D. | (8-2$\sqrt{15}$,4-$\sqrt{13}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在区间[-2,-1]上是增函数,在区间[-3,-2]上是增函效 | |
B. | 在区间[-2,-1]上是增函数,在区间[-3,-2]上是减函数 | |
C. | 在区间[-2,-1]上是减函数,在区间[-3,-2]上是增函数 | |
D. | 在区间[-2,-1]上是减函数,在区间[-3,-2]上是减函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com