精英家教网 > 高中数学 > 题目详情
四棱锥P—ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱,M、N两点分别在侧棱PB、PD上,.

(1)求证:PA⊥平面MNC。
(2)求平面NPC与平面MNC的夹角的余弦值.
(1)证明过程详见解析;(2).

试题分析:本题主要以四棱锥为几何背景,考查线面垂直、二面角等数学知识,考查学生用向量法解决立体几何的能力,考查学生的空间想象能力、逻辑推理能力和计算能力.第一问,连结AC、BD交于O,则在三角形APC中可知,在三角形PBO中,利用三边长,可知,利用线面垂直的判定得平面ABCD,所以建立空间直角坐标系,得到各个点的坐标,得到和平面MNC的法向量的坐标,可求出//,所以平面MNC;第二问,利用平面NPC的法向量垂直于得到法向量的坐标,利用夹角公式得到夹角的余弦值.
试题解析:设菱形对角线交于点,易知
.由勾股定理知,

 平面                      3分
建立如图空间直角坐标系,

                   5分

⑴显然,,平面的法向量
,由,知平面            8分    
⑵设面的法向量为 由
,得                             10分

所以平面与平面的夹角的余弦值为.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面
 
(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥中,底面是矩形,平面的中点,是线段上的点.

(1)当的中点时,求证:平面
(2)要使二面角的大小为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt中, D、E分别是上的点,且,将沿折起到的位置,使,如图2.

(1)求证:平面平面
(2)若,求与平面所成角的余弦值;
(3)当点在何处时,的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.

(1)设的中点,证明:平面;
(2)证明:在内存在一点,使平面,并求点,的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,点轴上,且,则点的坐标为      .   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知, 则两点间距离的最小值是(    )
A.B.2C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量a=(2,-3,5)与向量b=(3,λ,)平行,则λ=(  )
A.B.C.-D.-

查看答案和解析>>

同步练习册答案