【题目】某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
①写出y关于r的函数表达式,并求该函数的定义域;
②求该容器的建造费用最小时的r.
【答案】①y=4π(c-2)r2+,0<r≤2②当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时,r=.
【解析】(1)由体积V=,解得l=,
∴y=2πrl×3+4πr2×c
=6πr×+4cπr2
=2π,
又l≥2r,即≥2r,解得0<r≤2
∴其定义域为(0,2].
(2)由(1)得,y′=8π(c﹣2)r﹣,
=,0<r≤2
由于c>3,所以c﹣2>0
当r3﹣=0时,则r=
令=m,(m>0)
所以y′=
①当0<m<2即c>时,
当r=m时,y′=0
当r∈(0,m)时,y′<0
当r∈(m,2)时,y′>0
所以r=m是函数y的极小值点,也是最小值点.
②当m≥2即3<c≤时,
当r∈(0,2)时,y′<0,函数单调递减.
所以r=2是函数y的最小值点.
综上所述,当3<c≤时,建造费用最小时r=2;
当c>时,建造费用最小时r=
科目:高中数学 来源: 题型:
【题目】已知三棱台ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求证:BC1⊥平面AA1C1C
(2)点D是B1C1的中点,求二面角A1﹣BD﹣B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:集合,其中
.,称为的第个坐标分量.若,且满足如下两条性质:
①中元素个数不少于个.
②,,,存在,使得,,的第个坐标分量都是.则称为的一个好子集.
()若为的一个好子集,且,,写出,.
()若为的一个好子集,求证:中元素个数不超过.
()若为的一个好子集且中恰好有个元素,求证:一定存在唯一一个,使得中所有元素的第个坐标分量都是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10,30,20,10(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.
(1)求的值,并估计该厂生产一件产品的平均利润;
(2)现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.
(1)求证:DE∥平面PBC;
(2)求证:AB⊥PE;
(3)求三棱锥P﹣BEC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知=(2,1),=(1,7),=(5,1),设Z是直线OP上的一动点.
(1)求使取最小值时的;
(2)对(1)中求出的点Z,求cos∠AZB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校参加高二年级学业水平考试模拟考试的学生中抽取60名学生,将其数学成绩分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,画出如图的频率分布直方图.根据图形信息,解答下列问题:
(1)估计这次考试成绩的众数,中位数,平均数;
(2)估计这次考试成绩的及格率(60分及其以上为及格).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国在超级计算机方面发展迅速,跻身国际先进水平国家,预报天气的准确度也大大提高,天气预报说今后的三天中,每一天下雨的概率都是 ,我们可以通过随机模拟的方法估计概率.我们先产生组随机数
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
在这组数中,用表示下雨,表示不下雨,那么今后的三天中都下雨的概率近似为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com