12£®ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®Æä×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£®
£¨1£©Èô¶¯µãT£¨x£¬y£©Âú×ã$\overrightarrow{T{F}_{1}}$•$\overrightarrow{T{F}_{2}}$=2x2+3£¬Ç󶯵ãTµÄ¹ì¼£·½³Ì£»
£¨2£©ÈôSΪÍÖÔ²CÉÏÒ»¶¯µã£¬SµãÔÚxÖáÉϵÄͶӰÊÇD£¬ÇóDSµÄÖеãWµÄ¹ì¼£·½³Ì£»
£¨3£©¹ýÍÖÔ²CÄÚÒ»µãA£¨1£¬1£©×÷¶¯ÏÒMN£¬ÇóMNÖеãQµÄ¹ì¼£·½³Ì£»
£¨4£©¹ýµãP£¨3£¬0£©µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬OΪ×ø±êÔ­µã£¬ÇóÒÔOA£¬OBΪÁڱߵÄƽÐÐËıßÐÎOAEBµÄ¶¥µãEµÄ¹ì¼£·½³Ì£®

·ÖÎö £¨1£©ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£»
£¨2£©ÉèS£¨u£¬v£©£¬¼´ÓÐD£¨u£¬0£©£¬W£¨u£¬$\frac{1}{2}$v£©£¬ÓÉ´úÈë·¨£¬¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£»
£¨3£©ÉèM£¨m£¬n£©£¬N£¨s£¬t£©£¬´úÈëÍÖÔ²·½³Ì£¬Óɵã²î·¨£¬½áºÏÖеãµÄ×ø±ê¹«Ê½ºÍÖ±ÏßµÄбÂʹ«Ê½£¬¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£»
£¨4£©Éè³öÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔÙÓÉÒÔOA£¬OBΪÁڱߵÄƽÐÐËıßÐÎOAEB£¬¿ÉµÃ$\overrightarrow{OE}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£¬ÔËÓÃÏòÁ¿µÄ¼Ó·¨×ø±êÔËË㣬ÓÉÏûÈ¥²ÎÊý£¬¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£®

½â´ð ½â£º£¨1£©ÍÖÔ²$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1µÄF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
$\overrightarrow{T{F}_{1}}$•$\overrightarrow{T{F}_{2}}$=2x2+3£¬¿ÉµÃ£¨-1-x£©£¨1-x£©+y2=2x2+3£¬
»¯¼ò¿ÉµÃy2-x2=4£»
£¨2£©ÉèS£¨u£¬v£©£¬¼´ÓÐD£¨u£¬0£©£¬W£¨u£¬$\frac{1}{2}$v£©£¬
Áîx=u£¬y=$\frac{1}{2}$v£¬¼´Îªu=x£¬v=2y£¬ÓÉÍÖÔ²·½³Ì¿ÉµÃWµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{4{y}^{2}}{3}$=1£»
£¨3£©ÉèM£¨m£¬n£©£¬N£¨s£¬t£©£¬¼´ÓÐ
$\frac{{m}^{2}}{4}$+$\frac{{n}^{2}}{3}$=1£¬$\frac{{s}^{2}}{4}$+$\frac{{t}^{2}}{3}$=1£¬
Á½Ê½Ïà¼õ¿ÉµÃ$\frac{£¨m-s£©£¨m+s£©}{4}$+$\frac{£¨n-t£©£¨n+t£©}{3}$=0£¬
ÓÉm+s=2£¬n+t=2£¬kMN=$\frac{n-t}{m-s}$£¬¿ÉµÃkMN=-$\frac{3}{4}$£¬
ÔòMNÖеãQµÄ¹ì¼£·½³ÌΪy-1=-$\frac{3}{4}$£¨x-1£©£¬¼´Îªy=-$\frac{3}{4}$x+$\frac{7}{4}$£»
£¨4£©ÉèP£¨3£¬0£©µÄÖ±Ïßl£ºy=k£¨x-3£©£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ
£¨3+4k2£©x2-24k2x+36k2-12=0£¬
ÓÉ¡÷£¾0¿ÉµÃk2£¼$\frac{3}{5}$£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃx1+x2=$\frac{24{k}^{2}}{3+4{k}^{2}}$£¬
y1+y2=k£¨x1+x2-6£©=$\frac{-18k}{3+4{k}^{2}}$£¬
ÓÉÒÔOA£¬OBΪÁڱߵÄƽÐÐËıßÐÎOAEB£¬¿ÉµÃ$\overrightarrow{OE}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£¬
¼´ÓУ¨x£¬y£©=£¨x1+x2£¬y1+y2£©£¬
¼´Îª$\left\{\begin{array}{l}{x=\frac{24{k}^{2}}{3+4{k}^{2}}}\\{y=-\frac{18k}{3+4{k}^{2}}}\end{array}\right.$£¬ÏûÈ¥k£¬¿ÉµÃ3x2+4y2-18x=0£¨0¡Üx¡Ü$\frac{8}{3}$£©£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÖ±½Ó·¨¡¢µã²î·¨ºÍ´úÈë·¨£¬×ø±êתÒÆ·¨£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®tan£¨-675¡ã£©µÄÖµµÈÓÚ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®º¯Êýy=sin£¨-3x+$\frac{¦Ð}{4}$£©£¬x¡ÊRÔÚʲôÇø¼äÉÏÊÇÔöº¯Êý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¹ã¸æ¹«Ë¾ÎªÄ³ÓÎÀÖ³¡Éè¼ÆijÏîÉèÊ©µÄÐû´«»­£¬¸ù¾Ý¸ÃÉèÊ©µÄÍâ¹Û£¬Éè¼Æ³ÉµÄƽÃæͼÓɰ뾶Ϊ2mµÄÉÈÐÎAOBºÍÈý½ÇÇøÓòBCO¹¹³É£¬ÆäÖÐC£¬O£¬AÔÚÒ»ÌõÖ±ÏßÉÏ£¬¡ÏACB=$\frac{¦Ð}{4}$£¬¼Ç¸ÃÉèʩƽÃæͼµÄÃæ»ýΪS£¨x£©m2£¬¡ÏAOB=xrad£¬ÆäÖÐ$\frac{¦Ð}{2}$£¼x£¼¦Ð£®
£¨1£©Ð´³öS£¨x£©¹ØÓÚxµÄº¯Êý¹Øϵʽ£»
£¨2£©ÈçºÎÉè¼Æ¡ÏAOB£¬Ê¹µÃS£¨x£©ÓÐ×î´óÖµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÉèÕýËÄÀą̂ABCD-A¡äB¡äC¡äD¡äÖеÄÉÏ¡¢Ïµ×Ãæ±ß³¤·Ö±ðΪ2ºÍ4£¬²àÀⳤ¶ÈΪ2£¬ÇóÕâ¸öÀą̂µÄ¸ßºÍб¸ß£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èôx£¬y¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$]£¬ÇÒxsinx-ysiny£¾0£¬ÄÇôÏÂÃæ¹ØϵÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®x£¾yB£®x+y£¾0C£®x£¼yD£®x2£¾y2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýg£¨x£©=log2£¨3x-1£©£¬f£¨x£©=log2£¨x+1£©£¬
£¨1£©Çó²»µÈʽg£¨x£©¡Ýf£¨x£©µÄ½â¼¯£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏÂÇóº¯Êýy=g£¨x£©+f£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®f£¨x£©=$\left\{\begin{array}{l}{x+2£¬}&{x¡Ü-1}\\{{x}^{2}£¬}&{-1£¼x£¼2}\\{2x£¬}&{x¡Ý2}\end{array}\right.$£¬Èôf£¨x0£©=3£¬Ôòx0=£¨¡¡¡¡£©
A£®3B£®$\sqrt{3}$C£®2D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®½«º¯Êýy=f£¨x£©µÄͼÏóÏÈÏò×óƽÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»£¬È»ºóÏòÉÏƽÒÆ1¸öµ¥Î»£¬µÃµ½º¯Êýy=2cos2xµÄͼÏó£¬Ôòf£¨x-$\frac{7¦Ð}{2}$£©ÊÇ£¨¡¡¡¡£©
A£®-sin2xB£®-2cosxC£®2sinxD£®2cosx

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸