精英家教网 > 高中数学 > 题目详情

【题目】如图,一楼房高米,某广告公司在楼顶安装一块宽米的广告牌,为拉杆,广告牌的倾角为,安装过程中,一身高为米的监理人员站在楼前观察该广传牌的安装效果:为保证安全,该监理人员不得站在广告牌的正下方:设米,该监理人员观察广告牌的视角.

(1)试将表示为的函数;

(2)求点的位置,使取得最大值.

【答案】(1);(2)当米时,取得最大值.

【解析】

1)作,垂足为;作,垂足为,交;作,垂足为;在分别用表示出,根据,利用两角和差正切公式可求得结果;(2)根据(1)的结论,设,可得,利用基本不等式可求得时,取最大值,又上单调递增,可知时,最大,从而可得到结果.

1)作,垂足为;作,垂足为,交;作,垂足为,如下图所示:

中,

中,

监理人员必须在的右侧

综上所述:

2)由(1)可得:

,则

(当且仅当,即时取等号)

,即时,取最大值

上单调递增 最大时,最大

米时,取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)是定义在区间[-c,c]上的奇函数,其图象如下图所示.令g(x)=af(x)+b,则下列关于函数g(x)的结论:

①若a<0,则函数g(x)的图象关于原点对称;

②若a=-1,-2<b<0,则方程g(x)=0有大于2的实根;

③若a0,b=2,则方程g(x)=0有两个实根;

④若a0,b=2,则方程g(x)=0有三个实根.

其中,正确的结论为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=alnx3xx处取得极值.

1)若对任意x∈(0+∞),fxm恒成立,求实数m的取值范围;

2)讨论函数Fx)=fx+x2+kkR)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xlnx+1.

1)求函数fx)的单调区间;

2)求函数fx)的在区间[tt+1](t>0)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】货车欲以xkm/h的速度行驶,去130km远的某地,按交通法规,限制x的允许范围是50x100,假设汽油的价格为2元/升,而汽车耗油的速率是升/小时.司机的工资是14元/小时,试问最经济的车速是多少?这次行车往返的总费用最低是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

对函数Φx),定义fkx)=Φxmk)+nk(其中xmkmmk]kZm0n0,且mn为常数)为Φx)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3

1)当Φx)=2xf0x)和fkx)的解析式;求证:Φx)的各阶阶梯函数图象的最高点共线;

2)若Φx)=x2,则是否存在正整数k,使得不等式fkx)<(13kx4k23k1有解?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级有3名同学报名参加学校组织的辩论赛,现有甲、乙两个辨题可以选择,学校决定让选手以抽取卡片(除上面标的数不同外其他完全相同)的方式选择辩题,且每名选手抽取后放回.已知共有10张卡片,卡片上分别标有10个数.若抽到卡片上的数为质数(2357),则选择甲辨题,否则选择乙辩题.

1)求这3名同学中至少有1人选择甲辨题的概率.

2)用XY分别表示这3名同学中选择甲、乙辨题的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.

(1)填写教师教学水平和教师管理水平评价的列联表:

对教师管理水平好评

对教师管理水平不满意

合计

对教师教学水平好评

对教师教学水平不满意

合计

请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?

(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.

①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);

②求的数学期望和方差.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

同步练习册答案