【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.
(1)求A;
(2)若△ABC的面积S=c2,求sin C的值.
科目:高中数学 来源: 题型:
【题目】下列说法正确的个数为: ( )
①是“的充要条件”;
②“”是“”的必要不充分条件;
③“”是“直线与圆相切”的充分不必要条件
④“”是“”既不充分又不必要条件
A. 3 B. 4 C. 1 D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-5:不等式选讲
已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.
(1)求椭圆的方程;
(2)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于两点,连接,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.
(1)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形为正方形,四边形为直角梯形,且, ,平面平面, .
()求证: 平面.
()若二面角为直二面角,
(i)求直线与平面所成角的大小.
(ii)棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:的离心率为,其右焦点到椭圆C外一点的距离为,不过原点O的直线l与椭圆C相交于A,B两点,且线段AB的长度为2.
1求椭圆C的方程;
2求面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心坐标且与线y=3x+4相切,
(1)求圆C的方程;
(2)设直线与圆C交于M,N两点,那么以MN为直径的圆能否经过原点,若能,请求出直线MN的方程;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com