精英家教网 > 高中数学 > 题目详情
5.由直线x+y+2=0,x+2y+1=0,2x+y+1=0围成的三角形区域(包括边界)用不等式(组)可表示为$\left\{\begin{array}{l}{x+y+2≥0}\\{x+2y+1≤0}\\{2x+y+1≤0}\end{array}\right.$.

分析 作出直线,确定平面区域与直线的位置关系即可得到结论.

解答 解:作出三条直线,则对应的区域为△ABC,
由图象知,区域在线x+y+2=0的上方,x+2y+1=0的下方,2x+y+1=0的下方,
则对应的不等式组为$\left\{\begin{array}{l}{x+y+2≥0}\\{x+2y+1≤0}\\{2x+y+1≤0}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x+y+2≥0}\\{x+2y+1≤0}\\{2x+y+1≤0}\end{array}\right.$.

点评 本题主要考查二元一次不等式组表示平面区域,利用区域与不等式的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知k为实数,解关于x的不等式(kx-k2-1)(x-2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t为参数),圆O的极坐标方程为ρ=$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ)将直线l与圆O的方程化为直角坐标方程,并证明直线l过定点P($\frac{1}{2}$,1);
(Ⅱ)设直线l与圆O相交于A、B两点,求证:点P到A、B两点的距离之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式组$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤0}\end{array}\right.$表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用平面区域表示不等式组$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-1≥0}\\{x≤1}\end{array}\right.$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.符合条件{1,2}?P?{1,2,3,4}的集合P有2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x+y=4,且y>0,则$\frac{1}{4|x|}$+$\frac{|x|}{y}$的最小值为$\frac{28}{57}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.命题p:?x∈R,ax2+ax-1≥0,q:$\frac{3}{1-a}$>1,r:(a-m)(a-m-1)>0.
(1)若¬p∧q为假命题,求实数a的取值范围;
(2)若¬q是¬r的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足$\frac{1}{{a}_{n+1}-4}$=$\frac{{a}_{n}}{4({a}_{n}-4)}$,且a1=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Sn为数列{$\frac{\sqrt{{a}_{n}}-2}{\sqrt{n+1}}$}的前n项和,证明:Sn<2.

查看答案和解析>>

同步练习册答案