精英家教网 > 高中数学 > 题目详情

已知等差数列的前项和为,且满足:
(1)求数列的通项公式;
(2)设,数列的最小项是第几项,并求出该项的值.

(1);(2)4,23

解析试题分析:(1)由于为等差数列,且数列的前项和为,且满足:.通过假设首项与公差,根据以上两个条件,列出关于首项、公差的两个等式从而解出首项与公差的值.即可求得等差数列的通项.
(2)由(1)可求得等差数列的前n项和的的等式,从而求出数列的通项公式.根据数列的等式再利用基本不等式可求得结论.
试题解析:(1)设公差为,则有,即 
解得    以 
(2) 
所以
当且仅当,即时取等号,
故数列的最小项是第4项,该项的值为23 .
考点:1.等差数列的通项公式,前n项和公式.2.基本不等式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(1)求{an}的通项公式;
(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为
(1)求数列的通项公式;
(2)设求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(1)求dan
(2)若d<0,求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn,已知a1=1,an+1n2nn∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}满足a1=2,a2a4=8,且对任意n∈N*,函数f(x)=(anan+1an+2)xan+1cos xan+2sin x满足f=0.
(1)求数列{an}的通项公式;
(2)若bn=2,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的通项公式为an=3n-1,在等差数列{bn}中,bn>0(n∈N*),且b1b2b3=15,又a1b1a2b2a3b3成等比数列.
(1)求数列{bn}的通项公式;
(2)求数列{an·bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前项和为,满足恰好是等比数列的前三项.
(Ⅰ)求数列的通项公式;
(Ⅱ)记数列的前项和为,若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列为等差数列,且;数列的前n项和为,且
(I)求数列的通项公式;
(II)若为数列的前n项和,求

查看答案和解析>>

同步练习册答案