精英家教网 > 高中数学 > 题目详情

【题目】某大型工厂有6台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障的概率为.已知1名工人每月只有维修2台机器的能力(若有2台机器同时出现故障,工厂只有1名维修工人,则该工人只能逐台维修,对工厂的正常运行没有任何影响),每台机器不出现故障或出现故障时能及时得到维修,就能使该厂获得10万元的利润,否则将亏损2万元.该工厂每月需支付给每名维修工人1万元的工资.

(1)若每台机器在当月不出现故障或出现故障时,有工人进行维修(例如:3台大型机器出现故障,则至少需要2名维修工人),则称工厂能正常运行.若该厂只有1名维修工人,求工厂每月能正常运行的概率;

(2)已知该厂现有2名维修工人.

(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;

(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?

【答案】(1);(2)(ⅰ)见解析;(ⅱ)是.

【解析】

1)由该工厂只有1名维修工人,所以要使工厂能正常运行,最多只能出现2台大型机器出现故障.利用二项分布计算公式即可得出.
2X的可能取值为344658.利用二项分布列的计算公式即可得出概率分布列.

(1)因为该厂只有1名维修工人,

所以要使工厂正常运行,最多只能出现2台大型机器出现故障,

故该工厂能正常运行的概率为.

(2)(ⅰ)的可能取值为34,46,58,

的分布列为

.

(ⅱ)若该厂有3名维修工人,则该厂获利的数学期望为万元.

因为,所以该厂应再招聘1名维修工人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在区间[2aa1]上不单调求实数a的取值范围

(3)在区间[1,1]yf(x)的图象恒在y2x2m1的图象上方试确定实数m的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱锥中,底面是等边三角形,且分别是的中点.

(1)证明:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了111日至115日的白天平均气温与该小卖部的这种饮料销量(杯),得到如下数据:

日期

111

112

113

114

115

平均气温

9

10

12

11

8

销量(杯)

23

25

30

26

21

1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;

2)请根据所给五组数据,求出关于的线性回归方程

3)根据(1)中所得的线性回归方程,若天气预报116日的白天平均气温,请预测该奶茶店这种饮料的销量.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)写出命题两个有理数的和是有理数的逆命题、否命题、逆否命题;

2)判断上述四个命题的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2lnx.

(1)求f(x)的单调区间;

(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别为.若的面积为,且,则外接圆的面积为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两地相距400千米,一辆货车从地行驶到地,规定速度不得超过100千米/.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(千米/时)的平方成正比,比例系数为0.01;固定部分为.

1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域;

2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=gx=x++a,其中a为常数.

1)若gx)≥0的解集为{x|0xx≥3},求a的值;

2)若x1∈(0,+∞),x2[12]使fx1)≤gx2)求实数a的取值范围.

查看答案和解析>>

同步练习册答案