分析 (1)由题意,利用辅助角公式将f(x)化简为正弦型函数,利用已知条件分别求出ω,φ的值,即求出f(x)的函数表达式,将x=$\frac{π}{4}$-α代入求出sinα的值;
(2)利用函数图象变换得到g(x)的解析式,再求出[-π,π]上的单调递减区间.
解答 解:(1)由题意得:f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{6}$),
又因为f(x)为偶函数,所以φ-$\frac{π}{6}$=$\frac{π}{2}+kπ$,(k∈Z),
又因为0<φ<π,所以φ=$\frac{2π}{3}$,
又因为f(x)的两相邻对称轴间的距离为$\frac{π}{2}$,所以$\frac{T}{2}$=$\frac{π}{2}$,
所以ω=2,
所以f(x)=2sin(2x+$\frac{2π}{3}-\frac{π}{6}$)=2cos2x,
所以f($\frac{π}{4}$-α)=2cos($\frac{π}{2}$-2α)=$\frac{3\sqrt{7}}{4}$,
所以sin2α=$\frac{3\sqrt{7}}{8}$,
又因为α∈($\frac{π}{4}$,$\frac{π}{2}$),
所以2α∈($\frac{π}{2}$,π),
所以cos2α=-$\sqrt{1-si{n}^{2}2α}$=-$\sqrt{1-(\frac{3\sqrt{7}}{8})^{2}}$=-$\frac{1}{8}$,
又因为cos2α=1-2sin2α=-$\frac{1}{8}$,
所以sinα=$\frac{3}{4}$或-$\frac{3}{4}$(舍),
所以sinα=$\frac{3}{4}$;
(2)由(1)可知,f(x)=2cos2x,
所以g(x)=2cos(x-$\frac{π}{3}$),
当2kπ≤x-$\frac{π}{3}$≤π+2kπ(k∈Z)即$\frac{π}{3}$+2kπ≤x≤$\frac{4π}{3}$+2kπ(k∈Z)时,函数为减函数,
又因为x∈[-π,π],所以减区间为[-π,-$\frac{2π}{3}$],[$\frac{π}{3}$,π].
点评 (1)本题主要考察了学生对三角函数性质的掌握,解题关键在于三角恒等变换以及二倍角公式的熟练应用;(2)考察了函数图象的变换,关键在于学生对三角函数单调区间求法的掌握.
科目:高中数学 来源: 题型:选择题
A. | $\root{n-m}{\frac{{b}^{n}}{{a}^{m}}}$ | B. | $\frac{{b}^{n}-{a}^{m}}{n-m}$ | C. | $\root{n-m}{{b}^{n}-{a}^{m}}$ | D. | $\frac{\frac{{b}^{n}}{{a}^{m}}}{n-m}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ¬p∧¬q | B. | p∨¬q | C. | ¬p∧q | D. | p∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2a | B. | 2a2-2b2-4b | C. | 4a或2a2-2b2-4b | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com