精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(-1)=


  1. A.
    0
  2. B.
    8
  3. C.
    7
  4. D.
    不确定
B
分析:法一利用待定系数法:直接把已知条件代入可求b,c然后求出函数解析式后,把x=-1代入可求
法二:由f(1)=0,f(3)=0,利用二次函数的两点式可知,f(x)=(x-1)(x-3),把x=-1代入可求
法三:由f(1)=0,f(3)=0,可知二次函数的对称轴 x==2,可求b,然后由f(1)=0,可求c,把x=-1代入函数解析式中即可求解
解答:由题意可得,
解可得,
∴f(x)=x2-4x+3,
∴f(-1)=8
故选B
法二:∵f(1)=0,f(3)=0,
∴f(x)=(x-1)(x-3)
∴f(-1)=-2×(-4)=8
故选B
法三:∵f(1)=0,f(3)=0,
∴二次函数的对称轴 x==2
∴b=-4
∴f(x)=x2-4x+c
∵f(1)=0,
∴c=3
∴f(x)=x2-4x+3,
∴f(-1)=8
故选B
点评:本题主要考查了二次函数的解析式及函数值的求解,要注意不同解法涉及到的二次函数的解析式的不同形式
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案