精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.

求证:CD⊥平面PAE.

【答案】见解析

【解析】

如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设PA=h,则A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).

则利用空间向量证明CD⊥AE,CD⊥A.即可.

证明:如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.

设PA=h,则A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).

易知=(-4,2,0),=(2,4,0),=(0,0,h).

=-8+8+0=0,=0,∴CD⊥AE,CD⊥AP.

∵AP∩AE=A,∴CD⊥平面PAE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,A,B分别是椭圆C:=1(a>b>0)的左右顶点,F为其右焦点,2|AF||FB|的等差中项,|AF||FB|的等比中项.P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.

(1)求椭圆C的方程;

(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体ABCD中,AB,BC,CD两两互相垂直,且BC=CD=1.

(1)求证:平面ACD平面ABC;

(2)求二面角C-AB-D的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}和等比数列{bn}满足a1=b1=1,a2+a4=10,b2b4=a5
(Ⅰ)求{an}的通项公式;
(Ⅱ)求和:b1+b3+b5+…+b2n1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m( )
A.与a有关,且与b有关
B.与a有关,但与b无关
C.与a无关,且与b无关
D.与a无关,但与b有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差不为零,,且成等比数列.

(1)求的通项公式;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为平行四边形的四棱锥O-ABCD,BC⊥平面OAB,EOB中点,OA=AD=2AB=2,OB=.

(1)求证:平面OAD⊥平面ABCD;

(2)求二面角B-AC-E的余弦值.

查看答案和解析>>

同步练习册答案