精英家教网 > 高中数学 > 题目详情

【题目】某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:

x(单位:千元)

2

4

7

17

30

y(单位:万元)

1

2

3

4

5

员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程: =1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据 (yi i2=1.15) 参考公式:相关指数R2=1﹣
回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为 = = x,参考数据:ln40=3.688, =538.

【答案】
(1)解: =12, =3,所以, = ≈0.13, =1.44,

小王建立y关于x的线性回归方程为: =0.13x+1.44.


(2)解:据 (yi2=10,所以小王模型的相关指数R2=0.89,这个值比小李模型相关指数小,小李模型的拟合度更好,所以选择小李提供的模型更合适.

当x=40 时,由小李模型得 ≈5.37,

预测年宣传费为4万元的年利润为5.37万元.


【解析】(1) =12, =3,求出回归系数,可得回归方程;(2)小王模型的相关指数R2=0.89,这个值比小李模型相关指数小,小李模型的拟合度更好,所以选择小李提供的模型更合适.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点求证:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,如圆是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据:sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:直线mx﹣y+1=0与圆(x﹣2)2+y2=4有公共点;设命题q:实数m满足方程 + =1表示双曲线.
(1)若“p∧q”为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx;g(x)=
(1)讨论函数f(x)的单调性;
(2)求证:若a=e(e是自然常数),当x∈[1,e]时,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],当a>1时,对于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界,已知函数

Ⅰ)若是奇函数,求的值.

Ⅱ)当时,求函数上的值域,判断函数上是否为有界函数,并说明理由.

Ⅲ)若函数上是以为上界的函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, .

(1)当时,求函数f(x)的值域;

(2)若恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 的中点,将沿折起,使间的距离为则点到平面的距离为(

A. B. C. 1 D.

查看答案和解析>>

同步练习册答案