精英家教网 > 高中数学 > 题目详情
9.设直线l经过点P(3,4),圆C的方程为(x-1)2+(y+1)2=4.若直线l与圆C交于两个不同的点,求直线l的斜率的取值范围($\frac{21}{20}$,+∞).

分析 若直线l与圆C交于两个不同的点,则圆心到直线的距离小于半径,可得故直线的斜率的范围.

解答 解:设直线方程为y-4=k(x-3),即kx-y-3k+4=0,
∵直线l与圆C交于两个不同的点,
∴$\frac{|k+1-3k+4|}{\sqrt{{k}^{2}+1}}$<2,
∴k>$\frac{21}{20}$.
故答案为:($\frac{21}{20}$,+∞)

点评 本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.阅读如图所示的程序框图,运行相应的程序,若输入m的值为2,则输出的结果i等(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上的点M到焦点F1的距离是2,N是MF1的中点,则ON=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是(  )
A.y=log${\;}_{\frac{1}{2}}$xB.$y=\frac{-1}{x}$C.y=-x3D.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知焦点在y轴上的椭圆方程为$\frac{x^2}{6-m}+\frac{y^2}{m-4}=1$,则m的范围为(  )
A.(4,6)B.(5,6)C.(6,+∞)D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的值域:
(1)y=-2cosx-1;
(2)y=$\frac{2-cosx}{2+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知P(-2,-3)和以点Q为圆心的圆(x-4)2+(y-2)2=9.
(1)求以PC为直径的圆Q′的方程;
(2)设⊙Q′与⊙Q相交于点A、B,求直线AB的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=lg(3-x)+$\frac{1}{\sqrt{x-1}}$的定义于为A,函数g(x)=$\frac{2}{x+1}$,x∈(0,m)的值域为B.
(1)当m=2时,求A∩B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=sin$(2x-\frac{π}{6})$-1图象的对称轴方程为x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,对称中心坐标为( $\frac{kπ}{2}$+$\frac{π}{12}$,0)k∈Z,函数取得最大值时x的取值集合为{x|x=kπ+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

同步练习册答案