精英家教网 > 高中数学 > 题目详情
17.已知四面体ABCD的顶点都在球O球面上,且球心O在BC上,平面ADC⊥平面BDC,AD=AC=BD,∠DAC=90°,若四面体ABCD的体积为$\frac{4}{3}$,则球O的体积为$4\sqrt{3}π$.

分析 利用四面体ABCD的体积为$\frac{4}{3}$,求出球的半径,即可求出球O的体积.

解答 解:由题意,设AD=AC=BD=x,
∵∠DAC=90°,∴CD=$\sqrt{2}$x,
∵平面ADC⊥平面BDC,
∴A到平面BDC的距离为$\frac{\sqrt{2}}{2}$x,
∵球心O在BC上,
∴BD⊥CD,
∴四面体ABCD的体积为$\frac{1}{3}•\frac{1}{2}x•\sqrt{2}x•\frac{\sqrt{2}}{2}x$=$\frac{4}{3}$,
∴x=2,
∴OA=$\sqrt{1+2}$=$\sqrt{3}$,
∴球O的体积为$\frac{4}{3}•π•(\sqrt{3})^{3}$=$4\sqrt{3}π$.
故答案为:$4\sqrt{3}π$.

点评 本题给出四面体ABCD的体积为$\frac{4}{3}$,考查球O的体积,正确求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知tanα=-2,求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[a-1,a+1],关于x 的不等式f(x2+a)>a2f(x)恒成立,则实数a的取值范围是(  )
A.(0,2]B.(0,4]C.(0,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在直角三角形ABC中,∠C=$\frac{π}{2}$,AB=2,AC=1,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}$,则$\overrightarrow{CD}•\overrightarrow{CB}$=(  )
A.$\frac{9}{2}$B.5C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$sin(wx-\frac{π}{6})+2{cos^2}\frac{wx}{2}$(w>0),已知函数f(x)的图象的相邻对称轴的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若△ABC的内角A,B,C所对的边分别为a,b,c且f(A)=$\frac{3}{2}$,△ABC的面积为S=6$\sqrt{3}$,a=2$\sqrt{7}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,椭圆C:$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)的上顶点到焦点的距离为2,椭圆上的点到焦点的最远距离为2+$\sqrt{3}$.
(1)求椭圆的方程.
(2)设P(M,0)是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)当k=1时,|AB|=$\frac{8}{5}$$\sqrt{2}$,求M的值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知变量x,y∈R且满足约束条件$\left\{\begin{array}{l}x≥1\\ x-y+1≥0\\ 2x-y-2≤0\end{array}\right.$则x+2y的最大值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是R上的奇函数,若对于x≥0,都有f(x+4)=f(x),且当x∈[0,4)时,f(x)=log2(x+1).则f(2013)+f(-3015)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,是真命题的是(  )
A.垂直于同一平面的两平面平行
B.垂直于同一直线的两平面平行
C.与一直线成等角的两平面平行
D.若一个直角在平面α上的射影仍是一个直角,则这个角所在的平面与平面α平行

查看答案和解析>>

同步练习册答案