精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=loga $\frac{x-3}{x+3}$,g(x)=1+loga(x-1),(a>0且a≠1),设f(x)和g(x)的定义域的公共部分为D,
(1)求集合D;
(2)当a>1时.若不等式g(x-$\frac{1}{6}$)-f(2x)>2在D内恒成立,求a的取值范围;
(3)是否存在实数a,当[m,n]?D时,f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求实数a的取值范围,若不存在说明理由.

分析 (1)利用对数函数的定义求定义域即可;
(2)整理不等式得a<$\frac{(6x-7)(2x+3)}{6(2x-3)}$,构造函数g(t)=$\frac{(3t+2)(t+6)}{6t}$=$\frac{1}{2}$(t+$\frac{4}{t}$)+$\frac{10}{3}$,求出g(t)的最小值;
(3)对参数a进行分类讨论,当a>1时,f(x)在3,+∞)上递增,g(x)在3,+∞)上递增,不合题意,舍去;
当0《a<1时,f(x)在3,+∞)上递减,g(x)在3,+∞)上递减,构造m,n是f(x)=g(x)的两根,利用二次方程有解求出a的范围.

解答 解:(1)f(x)的定义域为:
$\frac{x-3}{x+3}$>0,
∴x>3或x<-3;
g(x)的定义域为:
x-1>0,
∴x>1,
∴集合D为(3,+∞);
(2)1+loga(x-$\frac{7}{6}$)-loga$\frac{2x-3}{2x+3}$>2,
∴loga$\frac{(6x-7)(2x+3)}{6(2x-3)}$>1,
∴a<$\frac{(6x-7)(2x+3)}{6(2x-3)}$,
设h(x)=$\frac{(6x-7)(2x+3)}{6(2x-3)}$,t=2x-3,
∴g(t)=$\frac{(3t+2)(t+6)}{6t}$=$\frac{1}{2}$(t+$\frac{4}{t}$)+$\frac{10}{3}$,
∴g(t)>g(3)=$\frac{11}{2}$,
∴1<a≤$\frac{11}{2}$.
(3)f(x)=loga(1-$\frac{6}{x+3}$),μ(t)=1-$\frac{6}{x+3}$在(3,+∞)上递增,μ(3)=0,
当a>1时,f(x)在3,+∞)上递增,g(x)在3,+∞)上递增,
  当m<n时,g(m)<g(n),不合题意,舍去;
当0<a<1时,f(x)在3,+∞)上递减,g(x)在3,+∞)上递减,
由f(m)=g(m),f(n)=g(n),
∴m,n是f(x)=g(x)的两根,
∴$\frac{x-3}{x+3}$=a(x-1),
∴ax2+(2a-1)x-3a+3=0,
∴m+n>6,mn>9,
∴a<$\frac{1}{8}$,
又m+n>2$\sqrt{mn}$,
∴a<$\frac{2-\sqrt{3}}{4}$或a>$\frac{2+\sqrt{3}}{4}$,
又△>0,(2a-1)2-4a(3-3a)>0
∴a<$\frac{2-\sqrt{3}}{4}$或a>$\frac{2+\sqrt{3}}{4}$,
∴0<a<$\frac{2-\sqrt{3}}{4}$.

点评 考查了对数函数定义域的求法,恒成立问题的转换,对参数a的讨论问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知直线l过圆x2+y2-6y+5=0的圆心,且与直线x+y+5=0平行,则l的方程是(  )
A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于数列{an},若满足${a_1},\frac{a_2}{a_1},\frac{a_3}{a_2},…,\frac{a_n}{{{a_{n-1}}}},…$是首项为1,公比为2的等比数列,则a9=236

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\frac{x}{1+x}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f2015(x)的表达式为$\frac{x}{1+2015x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)(-2015)0+($\frac{3}{2}$)-2•$\root{3}{(3\frac{3}{8})^{2}}$-$\frac{1}{\sqrt{0.01}}$+$\sqrt{{9}^{3}}$;
(2)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$z=\frac{1-3i}{1+i}$的模是(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C过点$(3,\sqrt{2})$,且与双曲线$\frac{x^2}{6}-\frac{y^2}{2}=1$有共同的渐近线,则双曲线C的标准方程为$\frac{x^2}{3}-{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值.
(1)121${\;}^{\frac{1}{2}}$    
(2)($\frac{125}{27}$)${\;}^{-\frac{2}{3}}$     
(3)2$\sqrt{3}$×$\root{3}{3}$×$\root{6}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点的集合M={(x,y)|xy>0}是指(  )
A.第一象限内点的集合B.第三象限内点的集合
C.第一、三象限内点的集合D.第二、四象限内点的集合

查看答案和解析>>

同步练习册答案