精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点P是圆上一动点,x轴于点D.记满足的动点M的轨迹为Γ.

(1)求轨迹Γ的方程;

(2)已知直线与轨迹Γ交于不同两点AB,点G是线段AB中点,射线OG交轨迹Γ于点Q,且.

证明:

AOB的面积S(λ)的解析式,并计算S(λ)的最大值.

【答案】(1);(2)

【解析】

试题(1)由已知MPD的中点,利用P点在圆上,可以求出M的点轨迹方程;(2)Q在(1)中的椭圆上,GOQ上的分点,利用直线与椭圆的关系,可以找到λm和k的关系,并进一步将三角形AOB的面积表示成λ的函数关系式,再求出它的最大值.

试题解析:(1)设,则点,且 (1)

(2)

将(2)代入(1),得

轨迹Γ的方程为 5分

(2)

消去y

6分

,即 (3)

又由中点坐标公式,得

根据,得

将其代入椭圆方程,有

化简得: (4) 9分

由(3)(4)得

(5)

AOB中, (6)

由(4)(5)(6)可得 12分

(当且仅当t=1时,即时取)

时,取得最大值,其最大值为1. 13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线过点

1)若直线的斜率为,证明:与圆相切;

2)若直线与圆交于两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体AMDCNB是由两个完全相同的四棱锥构成的几何体,这两个四棱锥的底面ABCD为正方形,,平面平面ABCD.

(1)证明:平面平面MDC.

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.

(1)请估计学校1800名学生中,成绩属于第四组的人数;

(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;

(3)请根据频率分布直方图,求样本数据的众数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数图象经过的定点坐标;

(2)时,求曲线在点处的切线方程及函数单调区间;

(3)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,已知

(1)求证:

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有一面积为12000平方米的三角形地块,其中边长为200米,现计划建一个如图所示的长方形停车场,停车场的四个顶点都在的三条边上,其余的地面全部绿化.若建停车场的费用为180/平方米,绿化的费用为60/平方米,设米,建设工程的总费用为.

1)求关于的函数表达式:

2)求停车场面积最大时的值,并求此时的工程总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数)满足,且.

(1)求函数的解析式;

(2) 求函数∈[0,2]上的最小值.

查看答案和解析>>

同步练习册答案