精英家教网 > 高中数学 > 题目详情

【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=

【答案】B
【解析】解:∵A:f(x)=x2、C:f(x)=ex , 不是奇函数,故不满足条件①
又∵D:f(x)= 的函数图象与x轴没有交点,故不满足条件②
而B:f(x)=sinx既是奇函数,而且函数图象与x也有交点,
故B:f(x)=sinx符合输出的条件
故选:B.
【考点精析】认真审题,首先需要了解程序框图(程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,AB、BC、BD两两垂直,AB=BC=BD=4,E、F分别为棱BC、AD的中点.

(1)求异面直线AB与EF所成角的余弦值;
(2)求E到平面ACD的距离;
(3)求EF与平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的图象上相邻两个最高点的距离为π.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.

(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;

(2)设总决赛中获得的门票总收入为,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an , 则 + + +…+ =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ax2﹣2bx
(1)设点a=﹣3,b=1,求f(x)的最大值;
(2)当a=0,b=﹣ 时,方程2mf(x)=x2有唯一实数解,求正数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果关于x的方程 正实数解有且仅有一个,那么实数a的取值范围为(
A.{a|a≤0}
B.{a|a≤0或a=2}
C.{a|a≥0}
D.{a|a≥0或a=﹣2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),设函数f(x)= +λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈( ,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点( ,0)求函数f(x)在区间[0, ]上的取值范围.

查看答案和解析>>

同步练习册答案