分析 (1)由题意可得函数f(x)的最小正周期为3π,又ω>0,利用周期公式即可得解.
(2)由(1)知f($\frac{3}{2}$a+$\frac{π}{2}$)=cos$α+\frac{1}{2}$=$\frac{23}{26}$,解得cos$α=\frac{5}{13}$,可求sin$α=\frac{12}{13}$,利用三角函数恒等变换的应用即可化简求值.
解答 解:(1)因为f(x)=sin(2ωx+$\frac{π}{6}$)$+\frac{1}{2}$,
所以,函数f(x)的最小正周期为3π,又ω>0,$ω=\frac{1}{3}$,
(2)由(1)知f(x)=sin($\frac{2}{3}$x+$\frac{π}{6}$)$+\frac{1}{2}$,
所以f($\frac{3}{2}$a+$\frac{π}{2}$)=sin($α+\frac{π}{2}$)+$\frac{1}{2}$=cos$α+\frac{1}{2}$=$\frac{23}{26}$,
解得cos$α=\frac{5}{13}$,
因为α是第一象限角,故sin$α=\frac{12}{13}$,
∴$\frac{sin(a+\frac{π}{4})}{cos(π+2a)}$=$\frac{sin(α+\frac{π}{4})}{-cos2α}$=-$\frac{\sqrt{2}}{2(cosα-sinα)}$=$\frac{13\sqrt{2}}{14}$.
点评 本题主要考查了三角函数周期公式,三角函数恒等变换的应用,考查了由y=Asin(ωx+φ)的图象确定其解析式,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 18 | B. | 22 | C. | 33 | D. | 44 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
非体育迷 | 体育迷 | 总计 | |
男 | |||
女 | |||
总计 |
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com