【题目】如图,在平面直角坐标系xOy中,已知椭圆的短轴长为2,离心率为.
(1)求椭圆E的标准方程;
(2)若直线l与椭圆E相切于点P(点P在第一象限内),与圆相交于点A,B,且,求直线l的方程.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点.求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:
;平面;
三棱锥的体积为定值;异面直线所成的角为定值,
其中正确结论的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司准备设计一个精美的心形巧克力盒子,它是由半圆、半圆和正方形ABCD组成的,且.设计人员想在心形盒子表面上设计一个矩形的标签EFGH,标签的其中两个顶点E,F在AM上,另外两个顶点G,H在CN上(M,N分别是AB,CB的中点).设EF的中点为P,,矩形EFGH的面积为.
(1)写出S关于的函数关系式
(2)当为何值时矩形EFGH的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥ABCD中,和都是等边三角形,平面PAD平面ABCD,且,.
(1)求证:CDPA;
(2)E,F分别是棱PA,AD上的点,当平面BEF//平面PCD时,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点在椭圆上,过点作轴的垂线,垂足为,点满足,已知点的轨迹是过点的圆.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点(,在轴的同侧),,为椭圆的左、右焦点,若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜率为的直线交抛物线于两点,已知点的横坐标比点的横坐标大4,直线交线段于点,交抛物线于点.
(1)若点的横坐标等于0,求的值;
(2)求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com