精英家教网 > 高中数学 > 题目详情
给出下列命题:①函数y=f(x)的图象与函数y=f(x-2)+3的图象一定不会重合;②函数y=log
1
2
(-x2+2x+3)
的单调区间为(1,+∞);③双曲线的渐近线方程是y=±
3
4
x
,则该双曲线的离心率是
5
4
,其中正确命题的个数是
 
分析:①中举一个一次函数的反例即可,②中注意真数大于0;③中注意讨论双曲线的焦点在x轴和y轴两种情况
解答:解:①中若f(x)=
3
2
x
,则y=f(x-2)+3=
3
2
(x-2)+3=
3
2
x
,故①错误;
②中x=4时式子无意义,故命题错误;
③中当双曲线的焦点在y轴时,有
a
b
=
3
4
,所以e2=(
c
a
)
2
=1+(
b
a
)
2
=
25
9
,所以e=
4
5
,③错误
故答案为:0
点评:本题以命题真假判断为载体考查图象变换、复合函数的单调性及双曲线的性质等知识,难度一般.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①函数f(x)=4cos(2x+
π
3
)
的一条对称轴是直线x=-
12

②已知函数f(x)=min{sinx,cosx},则f(x)的值域为[-1,
2
2
]

③若α,β均为第一象限角,且α>β,则sinα>sinβ.
其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(3a-1)x-2  x<1
logax         x≥1
,现给出下列命题:
①函数f(x)的图象可以是一条连续不断的曲线;
②能找到一个非零实数a,使得函数f (x)在R上是增函数;
③a>1时函数y=f (|x|) 有最小值-2.
其中正确的命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的“l高调函数”.现给出下列命题:
①函数f(x)=2x为R上的“1高调函数”;
②函数f(x)=sin2x为R上的“A高调函数”;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上“m高调函数”,那么实数m的取值范围是[2,+∞);
其中正确的命题是
①②③
①②③
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin|x|不是周期函数;        ②函数y=tanx在定义域内是增函数;
③函数y=|cos2x+
1
2
|
的周期是
π
2
;    ④函数y=sin(x+
2
)
是偶函数.
其中正确的命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=cos(
2
3
x+
π
2
)
是奇函数;②函数y=sinx+cosx的最大值为
3
2

③函数y=tanx在第一象限内是增函数;
④函数y=sin(2x+
π
2
)
的图象关于直线x=
π
12
成轴对称图形.
其中正确的命题序号是

查看答案和解析>>

同步练习册答案