【题目】椭圆的中心在坐标原点,焦点在轴上,过坐标原点的直线交于两点,,面积的最大值为
(1)求椭圆的方程;
(2)是椭圆上与不重合的一点,证明:直线的斜率之积为定值;
(3)当点在第一象限时,轴,垂足为,连接并延长交于点,求的面积的最大值.
【答案】(1);(2)证明见解析;(3)
【解析】
(1)根据求出a,根据面积关系求出b;
(2)设出点与的坐标,满足椭圆方程,计算两个斜率之积即可得到定值;
(3)先证明是直角三角形,用直角边乘积的一半表示面积,结合基本不等式或勾型函数求面积最值.
(1)由题可设椭圆的方程,
,,
设,
面积,
最大值为2,即,解得,
所以椭圆的方程为:;
(2)设是椭圆上与不重合的一点,
,,两式作差:,
即:
则直线的斜率之积,
所以直线的斜率之积为定值;
(3)点在第一象限,,设直线的方程,
由得:,
得,,
直线的斜率,其方程为,
由得:
设,则是方程的两个根,由韦达定理:
,
,即,
所以,
所以的面积
,设,当且仅当时,,
,
根据勾型函数性质:函数单调递增,
所以当时,取得最小值,
取得最大值,
即当时,的面积取最大值.
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cos2B+cosB=1-cosAcosC.
(1)求证:a,b,c成等比数列;
(2)若b=2,求△ABC的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2,数列{an}满足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求数列{an}的通项公式;
(2)证明数列{}为等差数列;
(3)设数列{cn}的通项公式为:Cn=,其前n项和为Tn,求T2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列中,,.令,数列的前项和为.
(1)求数列的通项公式;
(2)求数列的前项和;
(3)是否存在正整数,(),使得,,成等比数列?若存在,求出所有的,的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,四边形为菱形,对角线与的交点为,四边形为梯形, .
(Ⅰ)若,求证: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若, , ,求与平面所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.
(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望.
参考公式与数据:
参考数据:
参考公式
span>,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在直角梯形ABCD中,AD=1,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图②所示的几何体.
(1)求证:AB⊥平面ADC;
(2)若AC与平面ABD所成角的正切值为,求二面角B—AD—E的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,分别为椭圆:的左右焦点,已知椭圆上的点到焦点,的距离之和为4.
(1)求椭圆的方程;
(2)过点作直线交椭圆于,两点,线段的中点为,连结并延长交椭圆于点(为坐标原点),若,,等比数列,求线段的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.
(1)若,求曲线的方程;
(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;
(3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com