精英家教网 > 高中数学 > 题目详情

【题目】椭圆的中心在坐标原点,焦点轴上,过坐标原点的直线两点,面积的最大值为

1)求椭圆的方程;

2是椭圆上与不重合的一点,证明:直线的斜率之积为定值;

3)当点在第一象限时,轴,垂足为,连接并延长交于点,求的面积的最大值.

【答案】1;(2)证明见解析;(3

【解析】

1)根据求出a,根据面积关系求出b

2)设出点的坐标,满足椭圆方程,计算两个斜率之积即可得到定值;

3)先证明是直角三角形,用直角边乘积的一半表示面积,结合基本不等式或勾型函数求面积最值.

1)由题可设椭圆的方程

面积

最大值为2,即,解得

所以椭圆的方程为:

2)设是椭圆上与不重合的一点,

,两式作差:

即:

则直线的斜率之积

所以直线的斜率之积为定值;

3)点在第一象限,,设直线的方程

得:

直线的斜率,其方程为

得:

,则是方程的两个根,由韦达定理:

,即

所以

所以的面积

,设,当且仅当时,

根据勾型函数性质:函数单调递增,

所以当时,取得最小值

取得最大值

即当时,的面积取最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,已知cos2B+cosB=1-cosAcosC.

(1)求证:abc成等比数列;

(2)b=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn,公比q0S2=2a2-2S3=a4-2,数列{an}满足a2=4b1nbn+1-n+1bn=n2+n,(nN*.

1)求数列{an}的通项公式;

2)证明数列{}为等差数列;

3)设数列{cn}的通项公式为:Cn=,其前n项和为Tn,求T2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列中,.令,数列的前项和为.

(1)求数列的通项公式;

(2)求数列的前项和

(3)是否存在正整数,(),使得成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.

(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;

开车时使用手机

开车时不使用手机

合计

男性司机人数

女性司机人数

合计

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望

参考公式与数据:

参考数据:

参考公式

span>,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形ABCD中,AD1ADBCABBCBDDC,点EBC边的中点,将ABD沿BD折起,使平面ABD⊥平面BCD,连接AEACDE,得到如图②所示的几何体.

(1)求证:AB⊥平面ADC

(2)AC与平面ABD所成角的正切值为,求二面角BADE的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,分别为椭圆:的左右焦点,已知椭圆上的点到焦点,的距离之和为4.

(1)求椭圆的方程;

(2)过点作直线交椭圆,两点,线段的中点为,连结并延长交椭圆于点(为坐标原点),若,,等比数列,求线段的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.

(1)若,求曲线的方程;

(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;

3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.

查看答案和解析>>

同步练习册答案