精英家教网 > 高中数学 > 题目详情
若f(x)为奇函数,且x>0时,f(x)=x2-x+1,则x<0时的解析式为
f(x)=-x2-x-1
f(x)=-x2-x-1
分析:当x<0时,-x>0,由已知表达式可求出f(-x),利用奇函数的性质得到f(x)与f(-x)的关系,从而可得到答案.
解答:解:当x<0时,-x>0,则f(-x)=(-x)2-(-x)+1=x2+x+1.
又f(x)为奇函数,所以f(x)=-f(-x)=-x2-x-1.
故答案为:f(x)=-x2-x-1.
点评:本题考查奇函数的性质,属基础题,难度不大,深刻理解相关概念是解的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x|x-a|+b.
(1)当a=1,b=1时,求所有使f(x)=x成立的x的值.
(2)若f(x)为奇函数,求证:a2+b2=0;
(3)设常数b<2
2
-3
,且对任意x∈[0,1],f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R,有下列4个命题:
①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x=1对称;
②f(x-2)与f(2-x)的图象关于直线x=2对称;
③若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x=2对称;
④若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象关于直线x=1对称.
其中正确的命题为
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的函数,给出下列命题:
①若f′(1)=0,则x=1是f(x)的极值点;
②若1<a<3,则函数f(x)=
(3-a)x-3,x≤7
ax-6,x>7
是单调函数;
③若f(x)为奇函数,又f(x+1)为偶函数,则f(1)+f(3)+…+f(19)=f(2)+f(4)+…+f(20);
④若f(x)=xn+1(n∈N*),且f(x)在x=1处的切线与x轴交于点(xn,0),则lgx1+lgx2+…+lgx99=-2
其中正确命题的序号是
③④
③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
22x+1
.(a∈R)
(1)求证:f(x)是增函数;
(2)若f(x)为奇函数,求实数a的值..

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知函数f(x)=
2x-1
1+2x
(a∈R)

(I)若a=2,且f(x)=-
3
2
-2
2
,求x的值;
(II)若f(x)为奇函数,求a的值;
(III)当a=5时,函数f(x)的图象是否存在对称中心,若存在,求其对称中心;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案