精英家教网 > 高中数学 > 题目详情
已知集合A={x|-2≤x≤10,x∈Z},m,n∈A,方程
x2
m
+
y2
n
=1
表示焦点在x轴上的椭圆,则这样的椭圆共有______个.
∵方程
x2
m
+
y2
n
=1
表示焦点在x轴上的椭圆,
∴m>n>0
又∵集合A={x|-2≤x≤10,x∈Z},m,n∈A,
∴m、n在正整数1、2、3、…、9、10的十个数中取值
根据排列组合原理,可得符合题意的(m,n)共有C102=45个
故答案为:45
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(-3,2)离心率为
3
3
,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求
OA
OB
的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数4,m,9构成一个等比数列,则圆锥曲线x2+
y2
m
=1
的离心率为(  )
A.
30
6
B.
7
C.
30
6
7
D.
5
6
或7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,从椭圆
x2
a2
+
y2
b2
=1(a>b>o)上一点P向x轴作垂线,垂足恰好为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且ABOP,则椭圆的离心率e=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,P是椭圆
x2
25
+
y2
16
=1(xy≠0)
上的动点,F1、F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且
F2M
MP
=0
.则|OM|的取值范围______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
36
+
y2
20
=1的离心率e是(  )
A.
5
3
B.
3
2
C.
3
5
5
D.
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2(k1k2≠0),若椭圆的离心率为
3
2
,则|k1|+|k2|的最小值为(  )
A.1B.
2
C.
3
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),A、B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明-
a2-b2
a
x0
a2-b2
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P为椭圆
x2
16
+
y2
12
=1
上动点,F为椭圆的右焦点,点A的坐标为(3,1),则|PA|+2|PF|的最小值为(  )
A.10+
2
B.10-
2
C.5D.7

查看答案和解析>>

同步练习册答案