【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.
(1)若线段中点的横坐标是,求直线的方程;
(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2).
【解析】
试题分析:(1)椭圆的离心率公式,及的关系,求得,得到椭圆的方程;设出直线的方程,将直线方程代入椭圆,用舍而不求和韦达定理方法表示出中点坐标,此时代入已知中点的横坐标,即可求出直线的方程;(2)假设存在点,使为常数,分别分当与轴不垂直时以及当直线与轴垂直时,求出点的坐标,最后综合两种情况得出结论.
试题解析:(1)易求椭圆的方程为,
直线斜率不存在时显然不成立,设直线,
将代入椭圆的方程,
消去整理得,
设,则,
因为线段的中点的横坐标为,解得,
所以直线的方程为.
(2)假设在轴上存在点,使得为常数,
①当直线与轴不垂直时,由(1)知,
所以
,
因为是与无关的常数,从而有,
此时
②当直线与轴垂直时,此时结论成立,
综上可知,在轴上存在定点,使,为常数
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是椭圆的左顶点,经过左焦点的直线与椭圆交于,两点,求与的面积之差的绝对值的最大值.(为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数据,,,…,是杭州市100个普通职工的2016年10月份的收入(均不超过2万元),设这100个数据的中位数为,平均数为,方差为,如果再加上马云2016年10月份的收入(约100亿元),则相对于、、,这101个月收入数据( )
A.平均数可能不变,中位数可能不变,方差可能不变
B.平均数大大增大,中位数可能不变,方差也不变
C.平均数大大增大,中位数一定变大,方差可能不变
D.平均数大大增大,中位数可能不变,方差变大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块半径为的正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池和其附属设施,附属设施占地形状是等腰,其中为圆心, 在圆的直径上, 在半圆周上,如图.
(1)设,征地面积为,求的表达式,并写出定义域;
(2)当满足取得最大值时,开发效果最佳,求出开发效果最佳的角的值,
求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间某超市搞促销活动,当顾客购买商品的金额达到一定数量后可以参加抽奖活动,活动规则为:从装有个黑球, 个红球, 个白球的箱子中(除颜色外,球完全相同)摸球.
(Ⅰ)当顾客购买金额超过元而不超过元时,可从箱子中一次性摸出个小球,每摸出一个黑球奖励元的现金,每摸出一个红球奖励元的现金,每摸出一个白球奖励元的现金,求奖金数不少于元的概率;
(Ⅱ)当购买金额超过元时,可从箱子中摸两次,每次摸出个小球后,放回再摸一次,每摸出一个黑球和白球一样奖励元的现金,每摸出一个红球奖励元的现金,求奖金数小于元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:
大学 | 甲 | 乙 | 丙 | 丁 |
人数 | 8 | 12 | 8 | 12 |
从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.
(1)求各大学抽取的人数;
(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com