精英家教网 > 高中数学 > 题目详情
7.定义在(0,+∞)上的函数f(x)满足,对于任意的x>0,y>0,都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)求f(1)、的值;
(2)证明f(x)在区间(0,+∞)上为增函数;
(2)若f(2)=1,解关于x的不等式f(x)+f(x-3)>2.

分析 (1)利用赋值法进行求f(1)的值;      
(2)根据函数的单调性的定义判断f(x)在(0,+∞)上的单调性,并证明.
(3)根据函数单调性的性质解不等式即可.

解答 解:(3)令x=y=1,则f(1)=f(1)+f(1),解得f(1)=0.
(2)f(x)在(0,+∞)上的是增函数,
设x1,x2∈(0,+∞),且x1>x2,则$\frac{{x}_{1}}{{x}_{2}}>1$,
∴f($\frac{{x}_{1}}{{x}_{2}}$)>0,
∴$f({x}_{1})-f({x}_{2})=f({x}_{2}?\frac{{x}_{1}}{{x}_{2}})-f({x}_{2})$=$f({x}_{2})+f(\frac{{x}_{1}}{{x}_{2}})-f({x}_{2})=f(\frac{{x}_{1}}{{x}_{2}})>0$,
即f(x1)>f(x2),
∴f(x)在(0,+∞)上的是增函数.
(3)若f(2)=1,则f(2)+f(2)=f(2×2)=2,
即f(4)=2,
则解关于x的不等式f(x)+f(x-3)>2.
等价为f(x)+f(x-3)>f(4),
即f[x(x-3)]>f(4),
∵f(x)在(0,+∞)上的是增函数.
∴$\left\{\begin{array}{l}{x>0}\\{x-3>0}\\{x(x-3)>4}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>0}\\{x>3}\\{{x}^{2}-3x-4>0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>0}\\{x>3}\\{x>4或x<-1}\end{array}\right.$,
即x>4,
即不等式的解集为(4,+∞)

点评 本题主要考查函数单调性的定义和性质,以及抽象函数的求值,利用赋值法是解决抽象函数的基本方法,利用函数的单调性的定义和单调性的应用是解决本题的关键,考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设函数F(x)=$\frac{f(x)}{{e}^{x}}$是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(2)>e2f(0),f(2015)>e2015f(0)B.f(2)>e2f(0),f(2015)<e2015f(0)
C.f(2)<e2f(0),f(2015)<e2015f(0)D.f(2)<e2f(0),g(2015)>e2015f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a、b、c∈R+,求证:(a2+a+1)(b2+b+1)(c2+c+1)≥27abc.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知M=ab+1,N=a+b,Q=$\frac{1}{2|a|}$+$\frac{|a|}{b}$,a,b∈R.
(1)证明:当a>1,b>1时,M>N;
(2)若a+b=2,b>0,求当Q取最小值时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A(-2,0),B(2,0),若动点M(x,y)满足|MA|+|MB|=$\frac{5}{2}$|AB|,则动点M的轨迹方程是(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{21}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=(1-$\frac{a}{x}$)ex
(1)当a=2时,求曲线y=f(x)在(1,f(1))处的切线方程
(2)当x>0时,若函数f(x)的极大值为M,极小值为m,且M•m=e5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆的焦距为6,椭圆上的点到两个焦点的距离之和为10,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、c所对的边分别为a、b、c.又∠A=60°,sinB:sincC=2:3,AB边上的高为3$\sqrt{3}$,求a,b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=x3-2x2-x+2的零点,并画出它的图象.

查看答案和解析>>

同步练习册答案