分析 (1))f(x)=$\frac{1}{2}$cos$\frac{πx}{3}$-$\frac{\sqrt{3}}{2}$sin$\frac{πx}{3}$-cos$\frac{πx}{3}$-1=-$\frac{1}{2}$cos$\frac{πx}{3}$-$\frac{\sqrt{3}}{2}$sin$\frac{πx}{3}$-1=-sin($\frac{πx}{3}$+$\frac{π}{6}$)-1,代入周期公式即可;
(2)f(x)单调递增时,y=sin($\frac{πx}{3}$+$\frac{π}{6}$)单调递减,令$\frac{π}{2}$+2kπ≤$\frac{πx}{3}+\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解出f(x)的单调递增区间.
解答 解:(1)f(x)=cos$(\frac{π}{3}x+\frac{π}{3})-2co{s}^{2}\frac{π}{6}x$=$\frac{1}{2}$cos$\frac{πx}{3}$-$\frac{\sqrt{3}}{2}$sin$\frac{πx}{3}$-cos$\frac{πx}{3}$-1
=-$\frac{1}{2}$cos$\frac{πx}{3}$-$\frac{\sqrt{3}}{2}$sin$\frac{πx}{3}$-1=-sin($\frac{πx}{3}$+$\frac{π}{6}$)-1,
∴T=$\frac{2π}{\frac{π}{3}}$=6.
(2)令$\frac{π}{2}$+2kπ≤$\frac{πx}{3}+\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,
∴6k+1≤x≤6k+4,k∈Z
∴f(x)的单调递增区间为[6k+1,6k+4],k∈Z.
点评 本题考查了三角函数的恒等变换和单调区间,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A={x|-1≤x≤1},B={x|0≤x≤2},f:x→y=|x| | B. | $A=R,B=R,f:x→y=\frac{1}{x}$ | ||
C. | $A=R,B=R,f:x→y=\left\{\begin{array}{l}0,x≥0\\ 1,x≤0\end{array}\right.$ | D. | $A=N,B=Q,f:x→y=\sqrt{x}+1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com