精英家教网 > 高中数学 > 题目详情
手表的表面在一平面上.整点1,2,…,12这12个数字等间隔地分布在半径为的圆周上.从整点到整点的向量记作,则          

试题分析:因为整点把圆分成12份,所以每一份所对应的圆心角是30度,连接相邻的两点与圆心组成等腰三角形底边平方为,每对向量的夹角为30°,所以每对向量的数量积为 
所以=
点评:本题是向量数量积的运算,条件中没有直接给出两个向量的模和两向量的夹角,只是题目所用的向量要应用圆的性质来运算,把向量的数量积同解析几何问题结合在一起,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题16分)设双曲线:的焦点为F1,F2.离心率为2。
(1)求此双曲线渐近线L1,L2的方程;
(2)若A,B分别为L1,L2上的动点,且2,求线段AB中点M的轨迹方程,并说明轨迹是什么曲线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆共焦点且过点(5,-2)的双曲线标准方程是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的两条渐近线的夹角大小等于        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

要使直线与焦点在轴上的椭圆总有公共点,实数的取值范围是(   )
A.  B.  C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程.
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线的焦点,且被圆截得弦最长的直线的方程是         。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别是双曲线的左、右焦点,P为双曲线右支上一点,I是的内心,且,则= _________.

查看答案和解析>>

同步练习册答案