精英家教网 > 高中数学 > 题目详情

【题目】西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形,其中三角形区域为球类活动场所;四边形为文艺活动场所,,为运动小道(不考虑宽度)千米.

(1)求小道的长度;

(2)求球类活动场所的面积最大值.

【答案】(1)(2)

【解析】

(1)连接BD,在△BCD中由余弦定理得BD的值,在Rt△BDE中,求解BE即可;

(2)设∠ABEα,在△ABE中,由正弦定理求解ABAE,表示SABE,然后求解最大值.

如解图所示,连接

(1)在三角形中,千米,

由余弦定理得:

所以

,∴

,∴

(千米)

∴小道的长度为千米

(2)如图所示,设,∵

在三角形由正弦定理可得

,∴

故当时,取得最大值,最大值为.

∴球类活动场所的面积最大值为平方千米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某海滨浴场一天的海浪高度是时间的函数,记作,下表是某天各时的浪高数据:

0

3

6

9

12

15

18

21

24

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

1)选用一个三角函数来近似描述这个海滨浴场的海浪高度与时间的函数关系;

2)依据规定,当海浪高度不少于时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的之间,有多少时间可供冲浪爱好者进行冲浪?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线,曲线 .以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同四点,这四点在上的排列顺次为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则函数的图象为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°B处,到1110分又测得该船在岛北偏西60°,俯角为60°C处.

(1)求船的航行速度是每小时多少千米?

(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,O为坐标原点,点F为抛物线C1的焦点,且抛物线C1上点P处的切线与圆C2相切于点Q.

当直线PQ的方程为时,求 抛物线C1的方程;

当正数P变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且

(1)求证:数列为等比数列,并求出数列的通项公式;

(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有三个乡镇,分别位于一个矩形的两个顶点MN的中点S处,,现要在该矩形的区域内(含边界),且与MN等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为

1)设,试将L表示为x的函数并写出其定义域;

2)试利用(1)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的离心率为2,过点、斜率为1的直线与双曲线交于两点且.

(1)求双曲线方程。

(2)设为双曲线右支上动点,为双曲线的右焦点,在轴负半轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案