精英家教网 > 高中数学 > 题目详情
在△ABC中,D为BC边上一点,BC=3BD,AD=
2
,∠ADB=135°.若AC=
2
AB,则BD=
 
分析:先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理 AC2=CD2+2-2CD 得AC2=4BD2+2-4BD把AC=
2
AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.
解答:用余弦定理求得
AB2=BD2+AD2-2AD•BDcos135°
AC2=CD2+AD2-2AD•CDcos45°
即 AB2=BD2+2+2BD  ①AC2=CD2+2-2CD   ②
又BC=3BD
所以 CD=2BD
所以 由(2)得AC2=4BD2+2-4BD(3)
因为  AC=
2
AB
所以 由(3)得 2AB2=4BD2+2-4BD  (4)
(4)-2(1)
BD2-4BD-1=0
求得 BD=2+
5

故答案为:2+
5
点评:本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,D为BC的中点,已知
AB
=
a
AC
=
b
,则下列向量一定与
AD
同向的是(  )
A、
a
+
b
|
a
+
b
|
B、
a
|
a
|
+
b
|
b
|
C、
a
-
b
|
a
-
b
|
D、
a
|
a
|
-
b
|
b
|

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,D为边AB上一点,DA=DC.已知B=
π
4
,BC=1.
(Ⅰ)若DC=
6
3
,求角A的大小;
(Ⅱ)若△BCD面积为
1
6
,求边AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为边BC上的一点,BD=
1
2
DC
,∠ADB=120°,AD=2,若△ADC的面积为3-
3
,则∠BAC=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为BC中点,a,b,c成等差数列且a+c=8,cosB=
3
5
,a>c
,则
AD
BC
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为BC边中点,∠B+∠DAC=90°,判断△ABC的形状.

查看答案和解析>>

同步练习册答案