精英家教网 > 高中数学 > 题目详情

【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延误天数Y

0

2

6

10

历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.

【答案】
(1)

解:由题意,

P(X<300)=0.3,P(300≤X<700)=P(X<700)﹣P(X<300)=0.7﹣0.3=0.4,P(700≤X<900)=P(X<900)﹣P(X<700)=0.9﹣0.7=0.2,P(X≥900)=1﹣0.9=0.1

Y的分布列为

Y

0

2

6

10

P

0.3

0.4

0.2

0.1

∴E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3

D(Y)=(0﹣3)2×0.3+(2﹣3)2×0.4+(6﹣3)2×0.2+(10﹣3)2×0.1=9.8

∴工期延误天数Y的均值为3,方差为9.8;


(2)

解:P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6

由条件概率可得P(Y≤6|X≥300)=


【解析】(1)由题意,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,结合某程施工期间的降水量对工期的影响,可求相应的概率,进而可得期延误天数Y的均值与方差;(2)利用概率的加法公式可得P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6,利用条件概率,即可得到结论

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题满分14分)如图,在四棱锥中, 平面,底面是菱形, 的交点, 上任意一点.

1)证明:平面平面

2)若平面,并且二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,前项和为,且.

1)求证:数列是等差数列;

2)若数列满足,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),总有f(mn)=f(m)f(n),且f(x)>0,当x>1时,f(x)>1.
(1)求f(1),f(﹣1)的值;
(2)判断函数的奇偶性,并证明;
(3)判断函数在(0,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列 )中且对任意的

恒成立则称数列为“数列

(Ⅰ)若数列 为“数列”,写出所有可能的

(Ⅱ)若“数列 的最大值

(Ⅲ)设为给定的偶数对所有可能的数列

,其中表示 个数中最大的数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinxcosx+sin2x﹣
(1)求f(x)的最小正周期及其对称轴方程;
(2)设函数g(x)=f( + ),其中常数ω>0,|φ|< . (i)当ω=4,φ= 时,函数y=g(x)﹣4λf(x)在[ ]上的最大值为 ,求λ的值;
(ii)若函数g(x)的一个单调减区间内有一个零点﹣ ,且其图象过点A( ,1),记函数g(x)的最小正周期为T,试求T取最大值时函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在古希腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形则第n个三角形数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图.其中甲班有一个数据被污损.
(Ⅰ)若已知甲班同学身高平均数为170cm,求污损处的数据;
(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.

查看答案和解析>>

同步练习册答案