精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两位学生参加数学竞赛培训现分别从他们在培训期间参加的若干次预赛成绩中随机抽取记录如下:

甲:

乙:

用茎叶图表示这两组数据.

)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为派哪位学生参加合适?请说明理由

)若将频率视为概率,对甲同学在今后的三次数学竞赛成绩进行预测,记这次成绩中高于分的次数为,求的分布列及数学期望

【答案】(1)见解析;(2)派甲合适;(3)见解析.

【解析】试题分析:

(1)十位数字是茎,个数数字是叶,把所有数据列表可得(注意大小顺序);

(2)计算两人的均值,知均值相同,再计算方差,可得结论;

3)由已知确定的值可能为,且,计算出各个概率,再由期望公式可计算出期望.

试题解析:

)茎叶图如下:

)派甲

∴派甲合适.

)记甲同学在一次数学竞赛中成绩高于为事件

可能为 ,且服从

分布列为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装4台发电机的水电站,过去0年的水文资料显示,水库年入流量年入流量:一年内上游来水与库区降水之和,单位:亿立方米都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,将年入流量在以上四段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求在未来3年中,至多1年的年入流量不低于120的概率;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量的限制,并有如下关系:

若某台发电机运行,则该台发电机年利润为500万元;若某台发电机未运行,则该台发电机年亏损1500万元,水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

(1)画出散点图并判断是否线性相关;

(2)如果线性相关,求线性回归方程;

(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:恒成立;

(2)若关于的方程至少有两个不相等的实数根,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂今年前三个月生产某种产品的数量统计表如下:

为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟产品的月产量与月份的关系,模拟函数可选择二次函数为常数且),或函数为常数).已知4月份的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)求证:当时,对任意都有

(2)若函数有两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制,已知高三学生的原始成绩均分布在发布成绩使用等级制各等级划分标准见表.

原始成绩

85分及以上

70分到84

60分到69

60分以下

等级

优秀

良好

及格

不及格

为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计按照的分组作出频率分布直方图如图所示其中等级为不及格的有5人,优秀的有3人.

1)求和频率分布直方图中的的值

2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若该校高三学生共1000人,求竞赛等级在良好及良好以上的人数;

3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取2名学生进行学习经验介绍,求抽取的2名学生中优秀等级的学生恰好有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是双曲线 (a>0,b>0,xy≠0)上的动点,F1,F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=|NF1|=…=a。类似地:P是椭圆 (a>b>0,xy≠0)上的动点,F1,F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且,则|OM|的取值范围是________.

查看答案和解析>>

同步练习册答案