精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点是线段的中点,直线轴交于点,求.

【答案】I)曲线C,直线l

II

【解析】

)由同角的平方关系,化简可得曲线的普通方程,由极坐标和直角坐标的关系:,结合两角和的余弦公式,可得直线的直角坐标方程;

)求得的坐标,设出直线的参数方程,代入曲线的方程,运用韦达定理和中点公式,计算可得所求值.

解:()曲线的参数方程是 (为参数)

可得

则曲线C的普通方程为

直线l的极坐标方程为,

可得

II)由直线l的方程,可得

设直线l的参数方程为为参数),

将该参数方程代入圆

可得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,函数.

1)当时,求内的极值;

2)设函数,当有两个极值点时,总有,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆过定点,且在轴上截得的弦长,设动圆圆心的轨迹为曲线

1)求曲线的方程;

2)过点作直线交曲线两点,问在曲线上是否存在一点,使得点在以为直径的圆上?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数,为直线的倾斜角).以原点为极点,轴的非负半轴为极轴建立极坐标系,并在两个坐标系下取相同的长度单位.

1)当时,求直线的极坐标方程;

2)若曲线和直线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面平面的中点,.

1)求证:平面平面

2)若异面直线所成角为,求的长;

3)在(2)的条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,是边的中点.平面平面.线段上的点满足.

1)证明:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线处的切线方程;

2)若不等式对任意恒成立,求正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.过去10日,ABCD四地新增疑似病例数据信息如下:

A地:中位数为2,极差为5 B地:总体平均数为2,众数为2

C地:总体平均数为1,总体方差大于0 D地:总体平均数为2,总体方差为3.

则以上四地中,一定符合没有发生大规模群体感染标志的是_______(ABCD)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了调查小区成年居民对环境治理情况的满意度(满分按100计),随机对20名六十岁以上的老人和20名十八岁以上六十岁以下的中青年进行了不记名的问卷调查,得到了如下统计结果:

1:六十岁以上的老人对环境治理情况的满意度与频数分布表

满意度

人数

1

5

6

5

3

2:十八岁以上六十岁以下的中青年人对环境治理情况的满意度与频数分布表

满意度

人数

2

4

8

4

2

3

满意度小于80

满意度不小于80

合计

六十岁以上老人人数

十八岁以上六十岁以下的中青年人人数

合计

1)若该小区共有中青年人500人,试估计其中满意度不少于80的人数;

2)完成表3列联表,并回答能否有的把握认为小区成年居民对环境治理情况的满意度与年龄有关

3)从表3的六十岁以上的老人满意度小于80”满意度不小于80”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取3人,求至少有两人满意小于80的概率.

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

同步练习册答案