精英家教网 > 高中数学 > 题目详情
10.已知命题p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}$=1表示焦点在x轴上的椭圆,命题q:方程$\frac{x^2}{m}-\frac{y^2}{1-m}$=1表示双曲线,则p是q的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

分析 根据椭圆的定义求出p为真时m的范围,根据双曲线的定义求出q为真时m的范围,结合集合的包含关系判断即可.

解答 解:若方程$\frac{x^2}{2m}+\frac{y^2}{1-m}$=1表示焦点在x轴上的椭圆,
则$\left\{\begin{array}{l}{2m>0}\\{1-m>0}\\{2m>1-2m}\end{array}\right.$,解得:$\frac{1}{4}$<m<1,
故p:$\frac{1}{4}$<m<1;
若方程$\frac{x^2}{m}-\frac{y^2}{1-m}$=1表示双曲线,
则m(1-m)>0,解得:0<m<1,
故q:0<m<1,
故p是q的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查集合的包含关系以及椭圆和双曲线的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.盒中有1个黑球,9个白球,它们除颜色不同外,其他方面没什么差别,现由10人依次摸出1个球后放回,设第1个人摸出黑球的概率是P1,第10个人摸出黑球的概率是P10,则(  )
A.P10=$\frac{1}{10}$P1B.P10=$\frac{1}{9}$P1C.P10=0D.P10=P1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是定义域为R的偶函数,对任意的非负实数x,有f(x+2)=2f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{x^2}-2x\;,\;\;x∈[{0\;,\;\;1})\\-{2^x}\;,\;\;x∈[{1\;,\;\;2})\end{array}$,若x∈[-2,0]时,f(x)的值域是(  )
A.[-4,0]B.[-4,-2]∪[-1,0]C.(-4,0]D.(-4,-2]∪(-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点(1,$\frac{\sqrt{3}}{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)设P是椭圆C长轴上的一个动点,过P作斜率为$\frac{1}{2}$的直线l交椭圆C于A、B两点,求证:|PA|2+|PB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的离心率为e,抛物线x=2py2的焦点为(e,0),则实数p的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC的外心O满足$\overrightarrow{AO}$=$\frac{1}{3}$($\overrightarrow{AB}+\overrightarrow{AC}$),则cosA=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知与直线$x=-\frac{1}{4}$相切的动圆M与圆$C:{({x-\frac{1}{2}})^2}+{y^2}=\frac{1}{16}$外切.
(1)求圆心M的轨迹L的方程;
(2)若倾斜角为$\frac{π}{4}$且经过点(2.0)的直线l与曲线L相交于两点A、B,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线f(x)=$\frac{a+lnx}{x}$在点(e,f(e))处切线的斜率为-e-2
(1)若函数f(x)在[m,m+1]上存在极值,求实数m的取值范围;
(2)求证:当x>1时,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知3sinα-cosα=0,7sinβ+cosβ=0,且0<α<$\frac{π}{2}$<β<π,则2α-β的值为(  )
A.$\frac{5π}{4}$B.-$\frac{π}{3}$C.$\frac{π}{4}$D.-$\frac{3}{4}$π

查看答案和解析>>

同步练习册答案