精英家教网 > 高中数学 > 题目详情

在锐角△ABC中,角A、B、C的对边分别为a、b、c,且
(1)求角
(2)若,求面积S的最大值.

(1);(2).

解析试题分析:(1)由式子的结构特征,很自然联想到余弦定理,将其化为关于角的三角函数,由其函数值则可求出角;(2)由第(1)题的结果,可知,再由条件可得,,利用基本不等式可求出的最大值,进一步可得三角形面积的最大值.
试题解析:
(1)由已知得,所以 ,
又在锐角中,所以
(2)因为,所以 
 
 
所以面积的最大值等于
考点:余弦定理、三角形面积、基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知分别是的三个内角所对的边,若,求边的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)已知内角的对边分别为,且,若向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中,内角A,B,C的对边分别为a,b,c.
已知.
(Ⅰ)求的值;  (Ⅱ)若,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别为角的对边,△ABC的面积S满足.
(1)求角的值;
(2)若,设角的大小为表示,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△的内角所对边的长分别为,且有

(Ⅰ)求角A的大小;
(Ⅱ)若的中点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别是角的对边,向量,且//
(Ⅰ)求角的大小;
(Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,已知.
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知
(1)求
(2)若的面积是,求.

查看答案和解析>>

同步练习册答案