精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

【答案】)详见解析;(

【解析】试题分析:()取的中点,然后结合条件中的数据证明四边形为平行四边形,从而得到,由此结合线面平行的判定定理可证;()以为坐标原点, 的方向为轴正方向,建立空间直角坐标系,然后通过求直线的方向向量与平面的法向量的夹角的余弦值来求解与平面所成角的正弦值.

试题解析:()由已知得.

的中点,连接,由中点知.

,故,四边形为平行四边形,于是.

因为平面平面,所以平面.

)取的中点,连结.,从而,且

.

为坐标原点, 的方向为轴正方向,建立如图所示的空间直角坐标系.由题意知,

.

为平面的一个法向量,则

可取.

于是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如下图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>l,n∈N*)个点,相应的图案中总的点数记为 ,则 =( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了个面包,以(单位:个)表示面包的需求量,(单位:元)表示利润.

(1)求关于的函数解析式;

(2)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,是假命题的是(
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若y=|3sin(ωx+ )+2|的图象向右平移 个单位后与自身重合,且y=tanωx的一个对称中心为( ,0),则ω的最小正值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足(p﹣1)Sn=p2﹣an(p>0,p≠1),且a3=
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bnbn+2}的前n项和为Tn , 若对于任意的正整数n,都有Tn<m2﹣m+ 成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各个城市的大街小巷.为了解共享单车在市的使用情况,某调研机构在该市随机抽取了位市民进行调查,得到的列联表(单位:人)

(1)根据以上数据,能否在犯错误的概率不超过的前提下认为使用共享单车的情况与年龄有关?(结果保留3位小数)

(2)现从所抽取的岁以上的市民中利用分层抽样的方法再抽取5人

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机抽取2人赠送一件礼物,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:

消费次第

第1次

第2次

第3次

第4次

≥5次

收费比例

1

0.95

0.90

0.85

0.80

该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:

消费次第

第1次

第2次

第3次

第4次

第5次

频数

60

20

10

5

5

假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)经过点( ,1),以原点为圆心,椭圆短半轴长为半径的圆经过椭圆的焦点.
(1)求椭圆C的方程;
(2)设过点(﹣1,0)的直线l与椭圆C相交于A、B两点,试问在x轴上是否存在一个定点M,使得 恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案