精英家教网 > 高中数学 > 题目详情
16.已知a=$\sqrt{2}$,c=2,∠A=30°,则∠C=(  )
A.45°B.60°C.45°或135°D.60°或120°

分析 利用正弦定理列出关系式,把a,c,sinA的值代入求出sinC的值,即可确定出∠C的度数.

解答 解:∵a=$\sqrt{2}$,c=2,∠A=30°,
∴由正弦定理$\frac{a}{sinA}$=$\frac{c}{sinC}$得:sinC=$\frac{csinA}{a}$=$\frac{2×\frac{1}{2}}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
则∠C=45°或135°,
故选:C

点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知集合A中含有三个元素1,a+b,a,集合B中含有三个元素0,$\frac{b}{a}$,b,且两集合中元素相同,求a-b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.P为圆内接四边形ABCD的对角线交点,$\widehat{BC}$=$\widehat{CD}$,已知P点到AD的距离为2cm,则P点到AB的距离为2cm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在四边形ABCD(A,B,C,D按逆时针排列)中,$\overrightarrow{AB}$=(6,1),$\overrightarrow{CD}$=(-2,-3),若有$\overrightarrow{BC}∥\overrightarrow{DA}$,又有$\overrightarrow{AC}⊥\overrightarrow{BD}$,求$\overrightarrow{BC}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,满足Sn+2n=an.求证数列{an+2}是等比数列,并求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设随机变量X与Y相互独立,均服从正态分布N(0,32)且X1,X2,…,X9与Y1,Y2,…,Y9分别是来自总体X与Y的简单随机样本,则统计量U=$\frac{{X}_{1}+{X}_{2}+…+{X}_{9}}{\sqrt{{Y}_{1}^{2}+{Y}_{2}^{2}+…+{Y}_{9}^{2}}}$服从参数为9的t分布.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin2x),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求函数f(x)在(0,$\frac{π}{4}$)的取值范围;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,S△ABC=$\frac{\sqrt{3}}{2}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=x2-1,g(x)=$\left\{\begin{array}{l}{x-1(x<0)}\\{2-x(x>0)}\end{array}\right.$.求:
(1)f[g(x)]
(2)g[f(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=$\left\{\begin{array}{l}{3x+1,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{2-{x}^{2},x≤1}\\{2,x>1}\end{array}\right.$,则f[g(π)]=7,g[f(2)]=2.

查看答案和解析>>

同步练习册答案