精英家教网 > 高中数学 > 题目详情

【题目】在如图的空间几何体中,四边形为直角梯形,,且平面平面为棱中点.

1)证明:

2)求二面角的正弦值.

【答案】1)证明见解析;(2.

【解析】

(1)取中点为,连接,先证明四边形为平行四边形,可得.由题意得,则,即得证;

(2)建立空间直角坐标系,求出平面和平面的法向量,用向量的方法求解.

(1)证明:取中点为,连接,如图所示

因为,且

又因为,且

,且

即四边形为平行四边形,故

中点,

.

2平面平面,平面平面

平面

平面.

由(1)知平面

平面,而平面

.

中点连接,四边形为直角梯形,则

平面

平面,又平面平面,故

分别以所在直线为轴、轴、轴建立直角坐标系,如图所示

易知平面的一个法向量为

设平面的一个法向量为,则

,即,令

.

设二面角的为,则

.

二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,点为椭圆的左、右顶点,点是椭圆上一点,且直线的倾斜角为,已知椭圆的离心率为.

1)求椭圆的方程;

2)设为椭圆上异于的两点,若直线的斜率等于直线斜率的倍,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n为正整数,称n×n的方格表Tn的网格线的交点((n+1)2个交点)为格点.现将数12……(n+1)2分配给Tn的所有格点,使不同的格点分到不同的数.Tn的一个1×1格子S好方格,如果从2S的某个顶点起按逆时针方向读出的4个顶点上的数依次递增(如图是将数129分配给T2的格点的一种方式,其中BC是好方格,而AD不是好方格)Tn中好方格个数的最大值为f(n).

1)求f(2)的值;

2)求f(n)关于正整数n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数处取得极值1,证明:

2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下面左图,在直角梯形中,,点上,且,将沿折起,得到四棱锥(如下面右图).

1)求四棱锥的体积的最大值;

2)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3,答错或不答得0,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项不同,如果甲最终的得分为54,那么乙的所有可能的得分值组成的集合为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在[-11]上的奇函数且,若ab∈[-11],a+b0,有成立.

1)判断函数在[-11]上是增函数还是减函数,并加以证明.

2)解不等式.

3)若对所有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.

(1)求实数k的取值范围;

(2)证明:f(x)的极大值不小于1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线与曲线分别交于异于极点O的四点ABCD.

1)若曲线关于对称,求的值,并求的参数方程;

2)若 |,当时,求的范围.

查看答案和解析>>

同步练习册答案