精英家教网 > 高中数学 > 题目详情
8.在等差数列{an}中,若a1+a5+a9=$\frac{π}{2}$,则sin(a4+a6)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

分析 由等差数列的中项性质可得a1+a9=2a5,可得a5,再由sin(a4+a6)=sin2a5,即可得到所求值.

解答 解:在等差数列{an}中,若a1+a5+a9=$\frac{π}{2}$,
由a1+a9=2a5,可得3a5=$\frac{π}{2}$,
即a5=$\frac{π}{6}$,
则sin(a4+a6)=sin2a5=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故选:A.

点评 他考查等差数列中项的性质,考查正弦函数值的求法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知A,B∈{-3,-1,1,2}且A≠B,则直线Ax+By+1=0的斜率小于0的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,已知直线l:ax+y+2=0和点A(-3,0),若直线l上存在点M满足MA=2MO,则实数a的取值范围为a≤0,或a≥$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈R,x2-2x+5≤0”的否定为(  )
A.?x∈R,x2-2x+5≥0B.?x∉R,x2-2x+5≤0C.?x∈R,x2-2x+5>0D.?x∉R,x2-2x+5>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2且F1F2|=2,点P(1,$\frac{3}{2}$)在该椭圆上.
(Ⅰ)求椭圆C的方程及其离心率e;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,若△AF2B的面积为$\frac{12\sqrt{2}}{7}$,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$y=\sqrt{2x-4}+lg(5-x)$的定义域为A,且B={x|x>4}.
(1)求集合A;
(2)求A∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1>0}\\{x<2}\\{x+y-1>0}\end{array}\right.$,若z=2x-2y-1,则z的取值范围为(  )
A.(-$\frac{5}{3}$,5)B.(-$\frac{5}{3}$,0)C.[0,5]D.[-$\frac{5}{3}$,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个由圆柱和正四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为(  )
A.4π+4B.$4π+\frac{4}{3}$C.2π+4D.$2π+\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设抛物线C:y2=2px(p>0)的焦点F,其准线与x轴相交于点Q,过点F倾斜角为锐角θ的直线交抛物线于A,B两点,若∠QBF=90°,则cosθ=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步练习册答案