【题目】已知函数为奇函数.
(1)求的值;
(2)求函数在的最小值;
(3)若函数在区间上单调递减,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】在公差不为零的等差数列{an}中,a2=1,a2、a4、a8成等比数列.
(1)求数列{an}的通项公式an;
(2)设数列{an}的前n项和为Sn , 记bn= .Tn=b1+b2+…+bn , 求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)的函数f(x)满足如下三个条件:
①对于任意正实数a、b,都有f(ab)=f(a)+f(b)-1;
②f(2)=0;
③x>1时,总有f(x)<1.
(1)求f(1)及的值;
(2)求证:函数f(x)在(0,+∞)上是减函数;
(3)如果存在正数k,使关于x的方程f(kx)+f(2-x)=-1有解,求正实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义域为的奇函数,当.
(Ⅰ)求出函数在上的解析式;
(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;
(Ⅲ)若关于的方程有三个不同的解,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,底面为梯形,,,且.
(Ⅰ)若点为上一点且,证明:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ln(1+x).
(1)若曲线y=f(x)在点(0,f(0))处的切线方程为y=g(x),当x≥0时,f(x)≤ ,求t的最小值;
(2)当n∈N*时,证明: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com