精英家教网 > 高中数学 > 题目详情
如图所示,某池塘中浮萍蔓延的面积y(m2)与时间t(月)的关系y=at,有以下叙述:
①这个指数函数的底数为2;
②第5个月时,浮萍面积就会超过30m2
③浮萍从4m2蔓延到12m2需要经过1、5个月;
④浮萍每月增加的面积都相等;
⑤若浮萍蔓延到2m2,3m2,6m2所经过的时间分别为t1,t2,t3,则t1+t2=t3
其中正确的序号是   
【答案】分析:本题考查的是函数模型的选择和应用问题.在解答时,首先应该仔细观察图形,结合图形读出过的定点进而确定函数解析式,结合所给月份计算函数值从而获得相应浮萍的面积进而对问题作出判断,至于第⑤要充分结合对数运算的运算法则进行计算验证.
解答:解:∵点(1,2)在函数图象上,
∴2=a1∴a=2,故①正确;
∴函数y=2t在R上是增函数,且当t=5时,y=32故②正确,
4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;
如图所示,1-2月增加2m2,2-3月增加4m2,故④不正确.
对⑤由于:2=2 ,3=2 ,6=2
∴x1=1,x2=log23,x3=log26
又因为1+log23=log22+log23=log22×3=log26
∴若浮萍蔓延到2m2、3m2、6m2所经过的时间分别为x1,x2,x3,则x1+x2=x3成立.
故答案为:①②⑤.
点评:本题考查的是函数模型的选择和应用问题、数形结合法.在解答的过程当中充分体现了观察图形、分析图形和利用图形的能力,同时对数求值和对数运算的能力也得到了体现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某池塘中原有一块浮草,浮草蔓延后的面积y(m2)与时间t(月)之间的函数关系是y=at-1(a>0且a≠1),它的图象如图所示:
①池塘中原有浮草的面积是0.5m2
②到第7个月浮草的面积一定能超过60m2
③浮草每月增加的面积都相等;
④若浮草面积达到4m2,16m2,64m2所经过的时间分别为t1,t2,t3,则t1+t2<t3
其中所有正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某池塘中原有一块浮草,浮草蔓延后的面积y(m2)与时间t(月)之间的函数关系是y=at-1(a>0,且a≠1),它的图象如图所示.给出以下命题:
①池塘中原有浮草的面积是0.5m2
②到第7个月浮草的面积一定能超过60m2
③浮草每月增加的面积都相等;
④若浮草面积达到4m2,16m2,64m2所经过时间分别为t1,t2,t3,则t1+t2<t3,其中所有正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

某池塘中原有一块浮草,浮草蔓延后的面积y(m2)与时间t(月)之间的函数关系是y=at-1(a>0,且a≠1),它的图象如图所示.给出以下命题:
①池塘中原有浮草的面积是0.5m2
②到第7个月浮草的面积一定能超过60m2
③浮草每月增加的面积都相等;
④若浮草面积达到4m2,16m2,64m2所经过时间分别为t1,t2,t3,则t1+t2<t3,其中所有正确命题的序号是


  1. A.
    ①②
  2. B.
    ①④
  3. C.
    ②③
  4. D.
    ②④

查看答案和解析>>

科目:高中数学 来源:2004年江苏省无锡市高三调研数学试卷(解析版) 题型:选择题

某池塘中原有一块浮草,浮草蔓延后的面积y(m2)与时间t(月)之间的函数关系是y=at-1(a>0,且a≠1),它的图象如图所示.给出以下命题:
①池塘中原有浮草的面积是0.5m2
②到第7个月浮草的面积一定能超过60m2
③浮草每月增加的面积都相等;
④若浮草面积达到4m2,16m2,64m2所经过时间分别为t1,t2,t3,则t1+t2<t3,其中所有正确命题的序号是( )

A.①②
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

某池塘中原有一块浮草,浮草蔓延后的面积y(m2)与时间t(月)之间的函数关系是y=at-1(a>0且a≠1),它的图象如图所示:
①池塘中原有浮草的面积是0.5m2
②到第7个月浮草的面积一定能超过60m2
③浮草每月增加的面积都相等;
④若浮草面积达到4m2,16m2,64m2所经过的时间分别为t1,t2,t3,则t1+t2<t3
其中所有正确命题的序号为 ________.

查看答案和解析>>

同步练习册答案