【题目】下列各组函数中,表示同一函数的是( )
A.f(x)=x+1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( )2
C.f(x)=2log2x,g(x)=log2x2
D.f(x)=x,g(x)=log22x
【答案】D
【解析】解:对于A:f(x)=x+1的定义域为R,而g(x)= ﹣1的定义域为{x|x≠0},定义域不同,∴不是同一函数;
对于B:f(x)=|x|的定义域为R,而g(x)=( )2的定义域为{x|x≥0},定义域不同,∴不是同一函数;
对于C:f(x)=2log2x的定义域为{x|x>0},而g(x)=log2x2的定义域为{x|x≠0},定义域不同,∴不是同一函数;
对于D:f(x)=x,g(x)=log22x=x,它们的定义域为R,对应关系也相同,∴是同一函数;
故选D.
【考点精析】解答此题的关键在于理解判断两个函数是否为同一函数的相关知识,掌握只有定义域和对应法则二者完全相同的函数才是同一函数.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣a+1,(a>0且a≠1)恒过定点(2,2).
(1)求实数a;
(2)在(1)的条件下,将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x),设函数g(x)的反函数为h(x),求h(x)的解析式;
(3)对于定义在(1,4]上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2≤h(x2)+h(x)m+6恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若是函数是极值点,1是函数零点,求实数,的值和函数的单调区间;
(Ⅱ) 若对任意,都存在(为自然对数的底数),使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数 f(x)= 在[﹣2,3]上的最大值为2,则实数a的取值范围是( )
A.[ ln2,+∞ )
B.[0, ln2]
C.(﹣∞,0]
D.(﹣∞, ln2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为.
(1)若出现故障的机器台数为,求的分布列;
(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?
(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝5元的价格从花市购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17支玫瑰花,求当天的利润(单位:元),关于当天需求量(单位:枝, 的解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设花店在这100天内每天购进16枝玫瑰花或每天购进17枝玫瑰花,分别计算这100天花店的日利润(单位:元)的平均数,并以此作为决策依据,花店在这100天内每天购进16枝还是17枝玫瑰花?
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为概率,求当天的利润不少于75元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)是定义在R上的减函数,且f(x)>0恒成立,若对任意的x,y∈R,都有f(x﹣y)= ,
(1)求f(0)的值,并证明对任意的x,y∈R,f(x+y)=f(x)f(y);
(2)若f(﹣1)=3,解不等式 ≤9.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com