【题目】已知如图1直角梯形,,,,,E为的中点,沿将梯形折起(如图2),使平面平面.
(1)证明:平面;
(2)在线段上是否存在点F,使得平面与平面所成的锐二面角的余弦值为,若存在,求出点F的位置;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,城市缺水问题尤为突出,某市为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照,……分成9组,制成了如图所示的频率分布直方图.
(1)求频率分布直方图中的值,并估计该市市民月用水量的中位数;
(2)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代在珠算发明之前多是用算筹为工具来记数、列式和计算的.算筹实际上是一根根相同长度的小木棍,如图,算筹表示数1~9的方法有两种,即“纵式”和“横式”,规定个位数用纵式,十位数用横式,百位数用纵式,千位数用横式,万位数用纵式……依此类推,交替使用纵横两式.例如:27可以表示为“”.如果用算筹表示一个不含“0”的两位数,现有7根小木棍,能表示多少个不同的两位数( )
A.54B.57C.65D.69
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年,南昌市召开了全球VR产业大会,为了增强对青少年VR知识的普及,某中学举行了一次普及VR知识讲座,并从参加讲座的男生中随机抽取了50人,女生中随机抽取了70人参加VR知识测试,成绩分成优秀和非优秀两类,统计两类成绩人数得到如下的列联表:
优秀 | 非优秀 | 总计 | |
男生 | a | 35 | 50 |
女生 | 30 | d | 70 |
总计 | 45 | 75 | 120 |
(1)确定a,d的值;
(2)试判断能否有90%的把握认为VR知识的测试成绩优秀与否与性别有关;
(3)为了宣传普及VR知识,从该校测试成绩获得优秀的同学中按性别采用分层抽样的方法,随机选出6名组成宣传普及小组.现从这6人中随机抽取2名到校外宣传,求“到校外宣传的2名同学中至少有1名是男生”的概率.
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C:1(a>b>0)的离心率为,右准线方程为x=4,A,B分别是椭圆C的左,右顶点,过右焦点F且斜率为k(k>0)的直线l与椭圆C相交于M,N两点(其中,M在x轴上方).
(1)求椭圆C的标准方程;
(2)设线段MN的中点为D,若直线OD的斜率为,求k的值;
(3)记△AFM,△BFN的面积分别为S1,S2,若,求M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.
(1)若直线与椭圆交于两点,求的值;
(2)求椭圆的内接矩形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①中,是成立的充要条件;
②当时,有;
③已知 是等差数列的前n项和,若,则;
④若函数为上的奇函数,则函数的图象一定关于点成中心对称.其中所有正确命题的序号为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com