精英家教网 > 高中数学 > 题目详情
10.如图,在正三棱柱ABC-A1B1C1中,AB=2,AAl=3,点D为C1B的中点,点P为AB的中点.
(1)证明DP∥平面ACClAl
(2)求三棱锥C1-ABC的体积.

分析 (1)连结DP,AC1,推导出DP∥AC1,由此能证明DP∥平面ACClAl
(2)三棱锥C1-ABC的体积${V}_{{C}_{1}-ABC}$=$\frac{1}{3}×C{C}_{1}×{S}_{△ABC}$,由此能求出结果.

解答 证明:(1)连结DP,AC1
∵点D为C1B的中点,点P为AB的中点,
∴DP∥AC1
∵DP?平面ACClAl,AC1?平面ACClAl
∴DP∥平面ACClAl
解:(2)∵正三棱柱ABC-A1B1C1中,AB=2,AAl=3,
∴三棱锥C1-ABC的体积:
${V}_{{C}_{1}-ABC}$=$\frac{1}{3}×C{C}_{1}×{S}_{△ABC}$=$\frac{1}{3}×3×(\frac{1}{2}×2×2×sin60°)$=$\sqrt{3}$.

点评 本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示的“相邻塔”形立体建筑,已知P-OAC和Q-OBD是边长分别为a和$\frac{m}{a}({m是常数})$的两个正四面体,底面中AB与CD交于点O,试求出塔尖P,Q之间的距离关于边长a的函数,并求出a为多少时,塔尖P,Q之间的距离最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知acosB=bcosA,边BC上的中线长为4,则△ABC面积的最大值是(  )
A.9B.$\frac{28}{3}$C.$\frac{32}{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点$(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{4})$在幂函数y=f(x)的图象上,则f(-2)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{cos2θ}{sin(θ+\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则log${\;}_{\sqrt{2}}$(sinθ-cosθ)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,A、B是两个非空集合,定义A*B表示阴影部分集合,若集合A={x|y=$\sqrt{3x-{x^2}}$,x,y∈R},B={y|y=2x,x>0},则A*B=(  )
A.[0,+∞)B.[0,1]∪(3,+∞)C.[0,1)∪[3,+∞)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\frac{{2-m•{2^x}}}{2^x}$,函数$g(x)={log_a}({x^2}+x+2)$(a>0且a≠1)在$[{-\frac{1}{3}\;,\;1}]$上的最大值为2,若对任意的x1∈[-1,2],存在x2∈[0,3],使得f(x1)≥g(x2),则实数m的取值范围是(  )
A.$({-∞\;,\;-\frac{2}{3}}]$B.$[{\frac{2}{3}\;,\;+∞})$C.$({-∞\;,\;-\frac{1}{2}}]$D.$({-∞\;,\;\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各式比较大小正确的是(  )
A.1.72.5>1.73B.0.6-1>0.62C.1.70.3<0.93.1D.0.8-0.1>1.250.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设4a=5b=m,且$\frac{1}{a}$+$\frac{2}{b}$=1.
(1)求a,b的值(用m表示);
(2)求实数m的值.

查看答案和解析>>

同步练习册答案