精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数f(x)=x (m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足(a+1) <(3-2a) 的a的取值范围.

【答案】.

【解析】试题分析: 幂函数f(x)=x在(0,+∞)上单调递减,可得m2-2m-3<0,且m∈N*,可得m的值为1或2,又图象关于y轴对称,即函数为偶函数,将m=1和m=2分别代入检验,可得m=1成立,即f(x)=;又函数在(-∞,0),(0,+∞)上均为减函数,按照a+1与3-2a在同一单调区间上和不在同一区间上分三种情况讨论,解出不等式求出a的取值范围.

试题解析:

∵幂函数f(x)=x在(0,+∞)上单调递减,∴m2-2m-3<0,解得-1<m<3.∵m∈N*,∴m=1,2.

又函数的图象关于y轴对称,∴m2-2m-3是偶数,而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,

∴m1.

而f(x)=x在(-∞,0),(0,+∞)上均为减函数,(a1) <(32a) 等价于a+1>3-2a>0或0>a+1>3-2a或a+1<0<3-2a.解得a<-1或<a<.

故a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且对任意正整数,满足

(1)求数列的通项公式.

(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,利用函数单调性的定义判断并证明的单调性,并求其值域;

(2)若对任意,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试求下列函数的定义域与值域:

(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};

(2)f(x)=(x-1)2+1;

(3)f(x)=

(4)f(x)=x-.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足),且.

(1)求的解析式;

(2)若关于的方程在区间上有唯一实数根,求实数的取值范围(注:相等的实数根算一个).

(3)函数,试问是否存在实数,使得对任意 都有成立,若存在,求出实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=x (m∈N*).

(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;

(2)若该函数还经过点(2, ),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得第28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券,赛后,中国男篮主力易建联荣膺本届亚锦赛(最有价值球员),下表是易建联在这9场比赛中投篮的统计数据.

注:(1)表中表示出手次命中次;

(2)(真实得分率)是衡量球员进攻的效率,其计算公式为:

(1)从上述9场比赛中随机选择一场,求易建联在该场比赛中超过50%的概率;

(2)从上述9场比赛中随机选择一场,求易建联在该场比赛中至少有一场超过60%的概率;

(3)用来表示易建联某场的得分,用来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断之间是否具有线性相关关系?结合实际简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3+3x2-9x

(I)求fx)的单调区间;

(Ⅱ)若函数fx)在区间[-4,c]上的最小值为-5,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lm,平面αβ,下列命题正确的是 (  )

A. lβlααβ

B. lβmβlαmααβ

C. lmlαmβαβ

D. lβmβlαmαlmMαβ

查看答案和解析>>

同步练习册答案