精英家教网 > 高中数学 > 题目详情
精英家教网设G,Q分别为△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.
(I)求点C的轨迹E的方程;
(II)若l0是过点P(1,0)且垂直于x轴的直线,是否存在直线l,使得l与曲线E交于两个不同的点M,N,且MN恰被l0平分?若存在,求出l的斜率的取值范围;若不存在,请说明理由.
分析:(I)设C(x,y),由重心坐标公式的到G的坐标,再由GQ∥AB及Q在x轴上得到Q的坐标,又由|QB|=|QC建立方程.
(II)假设存在直线l:y=kx+m,代入迹E的方程,利用判别式大于0,及交点的中点横坐标为1,解出斜率的范围.
解答:解:(I)设C(x,y),则G(
x
3
y
3
)
,因为GQ∥AB,可得Q(
x
3
,0)
;又由|QB|=|QC|,
可得点C的轨迹E的方程为
x2
3
+y2=1(x≠0)
.(6分)(没有x≠0扣1分)
(II)假设存在直线l:y=kx+m,代入
x2
3
+y2=1

并整理得(1+3k2)x2+6mkx+3(m2-1)=0,(8分)
设M(x1,y1),N(x2,y2),
x1+x2
2
=
-3mk
1+3k2
=1
(*)(10分)
又△=36m2k2-12(1+3k2)(m2-1)
=4(1+3k2)[(1+3k2)-
(1+3k2)2
3k2
+3]
=4(1+3k2)
6k2-1
3k2
>0

解得k>
6
6
k<-
6
6
(13分)
特别地,若m=±1,代入(*)得,3k2±3k+1=0,此方程无解,即x≠0.
综上,l的斜率的取值范围是k>
6
6
k<-
6
6
.(14分)
点评:本题考查轨迹方程的求法,直线和圆锥曲线的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设G、M分别为不等边△ABC的重心与外心,A(-1,0)、B(1,0),GM∥AB.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线E,是否存在直线l,使l过点(0.1)并与曲线E交于P、Q两点,且满足
OP
OQ
=-2
?若存在,求出直线l的方程,若不存在,说明理由.
注:三角形的重心的概念和性质如下:设△ABC的重心,且有
GD
GC
=
GE
GA
=
GF
GB
=
1
2

查看答案和解析>>

科目:高中数学 来源:2008年广东地区数学科全国各地模拟试题直线与圆锥曲线大题集 题型:044

设G,Q分别为△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.

(Ⅰ)求点C的轨迹E的方程;

(Ⅱ)若l0是过点P(1,0)且垂直于x轴的直线,是否存在直线l,使得l与曲线E交于两个不同的点M,N,且MN恰被l0平分?若存在,求出l的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设G、M分别为不等边△ABC的重心与外心,A(-1,0)、B(1,0),GM∥AB.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线E,是否存在直线l,使l过点(0.1)并与曲线E交于P、Q两点,且满足数学公式?若存在,求出直线l的方程,若不存在,说明理由.
注:三角形的重心的概念和性质如下:设△ABC的重心,且有数学公式

查看答案和解析>>

科目:高中数学 来源:2007年江苏省盐城市滨海中学高考数学最后一模试卷(解析版) 题型:解答题

设G,Q分别为△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.
(I)求点C的轨迹E的方程;
(II)若l是过点P(1,0)且垂直于x轴的直线,是否存在直线l,使得l与曲线E交于两个不同的点M,N,且MN恰被l平分?若存在,求出l的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案