精英家教网 > 高中数学 > 题目详情

【题目】已知函数的极大值是函数的极小值的倍,并且,不等式恒成立,则实数的取值范围是( )

A. B.

C. D.

【答案】B

【解析】解:由题意可知:

据此可得函数 的极大值为

函数 的极小值为 ,即:

在区间 上:

不等式等价于: ,很明显

时:

结合 可得:

时:

结合 可得:

综上可得实数的取值范围是 .

本题选择D选项.

利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题关键是进行转化,把所求问题转化为求函数的最小值、最大值问题.若可导函数f(x)在指定的区间D上单调递增(),求参数范围问题,可转化为f′(x)≥0(f′(x)≤0)恒成立问题,从而构建不等式,要注意是否可以取到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点到坐标原点的距离和它到直线的距离之比是一个常数

(1)求点的轨迹;

(2)若时得到的曲线是,将曲线向左平移一个单位长度后得到曲线,过点的直线与曲线交于不同的两点,过的直线分别交曲线于点,设 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+px+q与函数y=f(f(f(x)))有一个相同的零点,则f(0)与f(1)(
A.均为正值
B.均为负值
C.一正一负
D.至少有一个等于0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,求函数的极值点;

(2)若函数在区间上恒有,求实数的取值范围;

(3)已知,且,在(2)的条件下,证明数列是单调递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知四边形为矩形,为平行四边形,点在平面内的射影恰好为点的中点为的中点为,且.

(1)求证:平面平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人每人有一张游泳比赛的门票,已知每张票可以观看指定的三场比赛中的任一场(三场比赛时间不冲突),甲乙二人约定他们会观看同一场比赛并且他俩观看每场比赛的可能性相同,又已知丙观看每一场比赛的可能性也相同,且甲乙的选择与丙的选择互不影响.

(1)求三人观看同一场比赛的概率;

(2)记观看第一场比赛的人数是,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|
(1)若函数y=f(x)+x在R上是增函数,求实数a的取值范围;
(2)若对任意x∈[1,2]时,函数f(x)的图像恒在y=1图像的下方,求实数a的取值范围;
(3)设a≥2时,求f(x)在区间[2,4]内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为自然对数的底数).

(1)设曲线处的切线为,若与点的距离为,求的值;

(2)若对于任意实数 恒成立,试确定的取值范围;

(3)当时,函数上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,003,…,800进行编号.

(Ⅰ)如果从第8行第7列的数开始向右读,请你依次写出最先检测的3个人的编号:(下面摘取了第7行至第9行)

(Ⅱ)抽的100人的数学与地理的水平测试成绩如下表:

成绩优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42人,若在该样本中,数学成绩优秀率为30%,求的值.

(Ⅲ)将 表示成有序数对,求“地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的数对的概率.

查看答案和解析>>

同步练习册答案