精英家教网 > 高中数学 > 题目详情
(2012•广元三模)已知数列{an}的前三项与数列{bn}的前三项对应相同,且a1+2a2+22a3…+2n-1an=8n对任意的n∈N+都成立,数列{bn+1-bn}是等差数列.
(I)求数列{an}的通项公式;
(II)求数列{bn}的通项公式;
(III)问是否存在k∈N*,使f(k)=bk-ak∈(0,1)?并说明理由.
分析:(I)利用a1+2a2+22a3+…+2n-1an=8n推出n-1时的表达式,然后作差求出数列{an}的通项公式,
(II)利用数列{bn+1-bn}是等差数列利用累加法求出{bn}的通项公式;
(III)化简bk-ak=k2-7k+14-24-k,通过k≥4时,f(k)=(k-
7
2
2+
7
4
-24-k单调递增,且f(4)=1,所以k≥4时,f(k)≥1,结合f(1)=f(2)=f(3)=0,说明不存在k∈N*,使得bk-ak∈(0,1).
解答:解:(I)已知a1+2a2+22a3+…+2n-1an=8n(n∈N*)①
n≥2时,a1+2a2+22a3+…+2n-2an-1=8(n-1)(n∈N*)②
①-②得2n-1an=8,解得an=24-n,在①中令n=1,可得a1=8=24-1
所以an=24-n(n∈N*)(4分)
(II)由题意b1=8,b2=4,b3=2,所以b2-b1=-4,b3-b2=-2,
∴数列{bn+1-bn}的公差为-2-(-4)=2,
∴bn+1-bn=-4+(n-1)×2=2n-6,
bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1
=8+(-4)+(-2)+…+(2n-8)=n2-7n+14(n∈N*)、(8分)
(III)bk-ak=k2-7k+14-24-k,当k≥4时,f(k)=(k-
7
2
2+
7
4
-24-k单调递增,
且f(4)=1,所以k≥4时,f(k)=k2-7k+14-24-k≥1.
又f(1)=f(2)=f(3)=0,所以,不存在k∈N*,使得bk-ak∈(0,1).(12分)
点评:本题主要考查等差关系的确定,等差数列、等比数列的通项公式,递推关系式的应用,二次函数的性质应用,数列与函数的关系,考查分析问题解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广元三模)在等差数列{an}中,a3+a8+a13=m,其前n项Sn=5m,则n=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广元三模)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函y=f(x)的图象恰好经过k 个格点,则称函数y=f(x)为k阶格点函数.已知函数:①y=2sinx;②y=cos(x+
π6
);③y=ex-1;④y=x2.其中为一阶格点函数的序号为
①③
①③
(注:把你认为正确论断的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广元三模)在△ABC中,sinA=
5
13
,cosB=
3
5
,则cosC=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广元三模)在一次运动会中,某小组内的甲、乙、丙三名选手进行单循环赛(即每两人比赛一场)共赛三场,每场比赛胜者得1分,输者得0分,、没有平局;在参与的每一场比赛中,甲胜乙的概率为
1
3
,甲胜丙的概率为
1
4
,乙胜丙的概率为
1
3

(I)求甲获得小组第一且丙获得小组第二的概率;
(II)设该小组比赛中甲的得分为ξ,求Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广元三模)直线y=x-4和双曲线
x
2
 
9
-
y
2
 
3
=1
相交于A、B两点,则线段AB的长度为(  )

查看答案和解析>>

同步练习册答案